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In this paper, we developed and validated a three-dimensional (3D) feature-based algorithm for tracking

stochastic ship-deck motion at high sea states, specifically Sea-State 6 using data from the Navy SCONE data

set. The new vision algorithm was developed from the structure-from-motion technique, which recovers the 3D

structure of an object from a series of two-dimensional (2D) images, and was validated using a simulated 3D ship

deck attached to a moving Stewart platform. Algorithm performance with different feature detectors and image

resolutions was compared. In hand-held tests, the vision algorithmwas demonstrated to accurately estimate the pose

of a moving ship deck using a quadrotor. Visually degraded conditions were also evaluated; the algorithm was

found robust to occlusion and low illumination, but performance reduced somewhat in severe glare. The vision

algorithm was then validated in a simple free-flight test. All results were compared with Vicon ground-truth data.

Additionally, as the 3D algorithm is computationally demanding, we developed and validated a method to improve

the computational speed of the vision algorithm.

I. Introduction

L ANDING a helicopter on a ship deck remains one of the most

difficult and hazardous tasks for a human pilot. The goal of our

research is to develop autonomous, vision-based ship-deck landing,

which can significantly improve safety for pilots.
We previously created a two-dimensional (2D), feature-based

vision algorithm to track ship-deck motion, which was able to

function in visually degraded conditions [1]. However, laboratory

testing demonstrated drawbacks to this approach. The algorithm

requires a feature-rich, 2D image to be placed on the ship deck,

which may not always be practical in some circumstances. From

hand-held and free-flight data, we observed that, in visually

degraded conditions, out-of-plane rotation of the landing pad image

caused by pitch and roll motion can cause significant error in the

estimated ship-deck pose [2].
In this paper, we have developed and investigated a three-

dimensional (3D), feature-based vision algorithm to remedy these

issues. This approach can work with arbitrary three-dimensional

objects, eliminating the requirement for a special, detailed 2D land-

ing pad image. The algorithm is also inherently able to detect the

object from many different viewpoints, making it potentially robust

to large rotations that could cause the 2D algorithm to fail [3].
Several prior studies have been conducted on using vision for

rotorcraft landing on both stationary and moving platforms using

simple visual tags or markings [4–8]. These approaches have also

been explored for the problem of landing on ship decks, which

present particular difficulty due to large, stochastic oscillating

motions [9–11].
Our previous work explored the use of vision for ship-deck

landing, given these challenges. We previously validated that it

was feasible to track and autonomously land on a stochastically

moving ship deck with vision alone. A fiducial-based algorithm was

executed onboard a quadrotor to track and land on a stochastically

moving platform [12]. Additionally, we developed a feature-based

algorithm for tracking the ship deck, which works by matching
features on a 2D reference image of the landing pad to camera

images of the ship deck. This algorithm was able to work with
generic landing pad patterns and could tolerate visually degraded

conditions to an extent, such as occlusion or illumination
differences, during bench-top tests [1]. However, its performance

deteriorated in some other visually degraded conditions [13].
These prior studies have focused entirely on 2D computer vision

methods. There now exists significant literature on 3D computer

vision [14]. However, these concepts have not yet been applied to
the problem of rotorcraft landing on a stochastically moving ship

deck. This paper focuses on whether 3D computer vision

approaches can mitigate the difficulties with the 2D feature-based
algorithm. First, we describe our new 3D feature-based algorithm to

estimate the pose of a moving ship deck in real time. Next, we
discuss the results of controlled algorithm testing for ship-deck

motion at high sea states and under visually degraded conditions;

we additionally evaluate algorithm performance in free-flight hover.
Finally, we evaluate a technique to improve the computational speed

of the algorithm.

II. 3D Vision Algorithm

A new 3D feature-based vision algorithm has been developed to
estimate the pose of a moving ship deck. This new approach can

potentially address many of the deficiencies of 2D feature-based

approaches. The algorithm incorporates multiple fundamental tech-
niques used in 3D computer vision.

A. Feature Extraction and Matching

Features, for the purposes of this work, are small patches of
interest, such as regions of high contrast or rich texture in an image,

which are robust to transformations in scale, translation, illumina-
tion, and in- and out-of-plane rotation. Locations of good features

are typically found by detecting strong corners or blobs (locations
with significant change in pixel intensity in two directions). Image

patches at these locations are extracted and converted to feature

descriptors, which are a numerical vector representation of the
image patch.
Features can be matched by comparing these extracted feature

descriptors, which can be used to find corresponding points across
different images. This technique was previously used in the 2D

vision algorithm [1].
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B. Feature Detectors

Multiple algorithms have been developed to detect and extract
image features. For this work, we used implementations of these
algorithms provided in the OpenCV library.
The scale invariant feature transform (SIFT) algorithm, developed

by Lowe [15], is a commonly used feature detector. It generates
vectors of length 128 as feature descriptors. Features can be com-
pared by calculating the L2-norm (Euclidean distance) between two
descriptors. The algorithm is invariant to changes in scale and
translation and is partially robust to changes in in- and out-of-plane
rotation and illumination. While the algorithm provides generally
good feature matching results, it is more computationally intensive
than many other detectors [16].
The Oriented Features from accelerated segment test (FAST) and

rotated Binary robust independent elementary features (BRIEF)
(ORB) algorithm [17] is another common feature detector. The algo-
rithm uses BRIEF binary descriptors; each of the 256 elements has the
value 1 or 0. These features can be compared with the Hamming
distance, which describes how many elements differ between two
descriptors. Although it is significantly faster computationally than
SIFT, it has lower robustness [16].

C. 3D Triangulation

Using two or more images, it is possible to determine the location
of a point in 3D space. This process, triangulation, is illustrated in
Fig. 1. A point in 3D space is projected onto two 2D camera images.
Using the 2D image points corresponding to this point, it is possible
to recover the point’s location in three dimensions. Feature matching
is typically used to find 2D image points corresponding to the same
point in three dimensions [14]. The images can be obtained using a
stereo (two-camera) setup or by using a monocular (single) camera
to obtain two images at different locations.
The triangulation process requires the poses, or positions and

orientations, of the camera(s) corresponding to each image. The
camera poses can be measured directly or recovered using a visual
reference of known size and pose, such as a fiducial marker. Alter-
natively, the relative camera poses can be estimated using multiple
corresponding or matched 2D image points. The disadvantage of
this approach is that it is ambiguous in scale; an additional scale
reference must be used to recover this information.
Although only two images are necessary for triangulation, addi-

tional images can be used to recover additional 3D points for which
correspondences could not be found in the previous images. If point
correspondences are found across more than two images, the accu-
racy of the recovered 3D points can be improved further through
numerical optimization techniques. This is described in more detail
in the following section.

D. Ship-Deck Detection Algorithm

A new ship-deck detection algorithm was developed as part of
this research program. The algorithm is separated into two stages: 1)
extraction of features and their 3D positions from a set of images of
a target object and 2) estimating the pose of the object using this
extracted data.

The feature extraction stage is developed from the structure-from-

motion technique, which is used to recover the 3D structure of an

object from a sequence of 2D images of it [14]. In this application,

the 3D structure consists of a 3D point cloud (a collection of points

in 3D space), and each point is associated with the 3D position of an

extracted feature. An overview of this process is given as follows:
1) Obtain a sequence of images of the target object along with

initial estimated camera poses. These images can be collected from
one or more cameras and should include a sequence of varying
object orientations relative to the camera(s), covering a range of
object poses similar to those that may be observed during the pose
estimation stage. The estimated camera poses can be obtained
through physical measurement of the camera position or by use of
a known visual reference, such as an attached fiducial marker.
2) Extract and match 2D features in the first two images to find

corresponding points. Then, triangulate these points using the cor-
responding camera poses to estimate the 3D positions of these
points. Store the matched features and their 3D positions. Imple-
mentations from OpenCV, an open-source computer vision library,
are used for feature extraction and matching.
3) Extract features from each subsequent image. First, check for

any matches with previously stored features. This is used to track
features across multiple images, which are used later to refine the
3D point positions. Next, find any new feature matches between the
current and previous image, and repeat the tasks in Step 2.
4) Repeat this process for all images. The end result will be a list

of extracted features, triangulated 3D point positions, and 2D posi-
tions of these features in each image.
5) Refine the estimated 3D point positions and camera poses with

numerical optimization, also known as bundle adjustment. For each
image, the estimated 3D points are projected back to 2D and are
then compared to the actual 2D feature positions in the image. The
numerical optimization minimizes the error between the projected
and actual 2D points, resulting in more accurate 3D point positions.
6) Remove any 3D points, and their corresponding features, that are

not located on the object itself. These points may be features located in
the background or may be outliers resulting from incorrect matching.
In this paper, these points are removed by generating a 3D bounding
box (an imaginary 3D box which fully and tightly encloses the object
geometry). Points within the box are assumed to fall on the object and
are retained, while points that fall outside it are removed. This
procedure removes background features and incorrect 3D points,
preventing unwantedmatches to these features during pose estimation.
7) Finally, save the refined 3D points and associated 2D feature

descriptors.

The next stage is used for actual pose estimation. This is the

portion that will be run onboard a rotorcraft during landing. This

stage uses a monocular (single) camera, as 2D features from a single

image are matched to stored 3D features. The process is described in

detail as follows:
1) Load the saved features and their corresponding 3D positions.
2) Obtain a new 2D image of the target object (such as a frame

from an onboard camera). Extract features from this image, and find
matches with the features loaded in the previous step. This provides
a list of 2D points in the image and their corresponding points in the
stored 3D point cloud.
3) Solve the perspective-n-point (PnP) problem, which estimates

the pose of the target object from corresponding 3D and 2D points.
An OpenCV implementation of PnP, employing the random sample
consensus (RANSAC) method, is used for this step. RANSAC
iterates through many random samples of the corresponding points,
finding pose estimates for each. The estimate with the largest
number of inliers, or points consistent with the pose estimate, is
selected as the final result. This makes the result more robust to
outliers (poor matches).
4) The final output will be the pose (position and orientation) of

the object in the 2D image. This process is repeated independently
for any new images inputted.
5) If additional filtering of the raw data is necessary, the results

are fed into a Kalman filter to mitigate any noise or small errors in
the pose estimation results.Fig. 1 Triangulation of 3D points using two images.
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The features in a camera frame will be extracted and matched to
the saved features from the first step. The matches between the 3D
object points and the 2D points in the camera frame are used to
recover the pose of the 3D object (the ship deck). Because this
process extracts features from many viewpoints of the object,
instead of a single 2D image, the pose estimation is expected to
be far more robust to rotation of the ship deck.

E. Initial Algorithm Validation

The algorithm was initially validated using a publicly available data
set, consisting of photos of an object taken from many viewpoints
[18]. This data set is useful for basic validation because it contains
both predetermined camera poses and accurate ground truth data. We
inputted a subset of the images in the data set, consisting of one full
revolution about the object by the camera, into the feature extraction
stage. Figure 2a provides an example of a data set image used for
feature extraction. A total of 962 features and their corresponding 3D
positions were successfully extracted, as shown in Fig. 2b.
For pose estimation, another subset of images was used, consist-

ing of viewpoints not used to extract features. These images form a
sequence in which the camera again revolves around the object,
though with the camera rotated 15 deg from the original images to
ensure these viewpoints are not the same as those used earlier to
extract features. The sequence covers a 315 deg view around the
object. One of these estimated object poses is illustrated in Fig. 2c.
The estimated poses for the sequence were then compared with
ground truth, shown in Fig. 3. Note that images in the sequence are

numerically labeled in order, starting from image 0 and ending with
image 40. For each image, there is a corresponding object pose. The
plot shows that these poses can be recovered precisely.

III. Vision System Integration

The vision algorithm is integrated into a quadrotor unmanned
aerial vehicle (UAV) to demonstrate the feasibility of vision-based
ship-deck landing. Because external communication may be unre-
liable during real ship-deck landings, the vision algorithm must run
using only onboard hardware. This hardware is described in the
following for completeness; this is the same as was used for testing
the 2D vision algorithm [2].

A. Camera for Vision

A See3CAM USB camera, manufactured by e-con Systems, was
used to obtain images of the ship deck. It features a built-in
autoexposure algorithm, which automatically varies the camera
shutter speed for varying light intensity received by the camera.
This allows the camera to compensate for a wide range of scene
illumination, though at the cost of increased motion blur for low
illumination levels. On the quadrotor, the camera is mounted on the
underside, facing downward.

B. Flight Computer

AnUp Xtreme single-board computer, featuring an Intel i5-8365UE
processor, was used for the real-time pose estimation portion of the
algorithm. This computer was previously used for our 2D feature-
based algorithm [2]. This computer is mounted to the quadrotor to run
the algorithm onboard.
As the feature extraction stage is computationally demanding,

this portion was performed on an external desktop computer. The
saved features and 3D points were then copied onto the flight
computer for use in pose estimation. This also replicates the realistic
operational scenario.

C. Code Integration

The pose estimation algorithm was implemented into the onboard
flight computer. The code uses Robot Operating System 2 (ROS 2),
a set of robotics libraries, for asynchronous communication between
individual processes, or nodes. The pose estimation algorithm and
logging runs on a single node. An additional node is dedicated to
continuously retrieving and publishing frames from the camera,
which are then received as needed by the vision algorithm.

D. Quadrotor

The camera and flight computer were integrated into a quadrotor
UAV for testing, shown in Fig. 4. The quadrotor, which has a gross
takeoff weight of 2.75 kg, was developed and fabricated in house
with a combination of off-the-shelf and custom components. It has a
frame size of 450 mm × 450 mm (measured from the centers of the

Fig. 2 Images illustrating the steps in the algorithm.

Fig. 3 Estimated object pose compared to ground truth across a
sequence of new images.
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motors) and a 9 in. (0.229 m) rotor diameter. This quadrotor was

previously used to validate the 2D feature-based algorithm [2].

IV. Algorithm Validation with Simulated Ship Deck

The performance of the new algorithm must be evaluated with

real-world objects before it can be incorporated into an aircraft for

ship-deck landing.

A. Ship Deck

The vision algorithm was validated with a 3D object simulating

a ship deck. The deck measures 266.7 × 266.7 × 104.8 mm (10.5 ×
10.5 × 4.125 in.) and incorporates several simple 3D shapes. ArUco

markers of varying sizes have been affixed to the surfaces of the

ship deck to provide many good features for detection. ArUco

markers were specifically chosen to provide some consistency

with the ArUco marker grid used to validate the 2D feature-based

algorithm [2].

To extract features and 3D points from the object, we created a set

of images of the object in a controlled manner. A camera was placed

at three different fixed positions, and the object was rotated on a

base in 10 deg increments to collect images around the entire object.

With this process, a total of 111 photographs were collected from

different camera poses. Example images from each camera position

are provided in Fig. 5. For improved image quality, these photo-

graphs were taken using an illuminated photography tent with a

monochrome background. This reduces illumination differences

and shadows and minimizes unwanted detections of background

features. One of the ArUco fiducial markers on the object, which

was fully visible in all views, was used to obtain initial estimates of

the camera poses relative to the ship deck during feature extraction.

OpenCV functions were used to detect the fiducial marker in each

image and compute the relative pose of the camera.

B. Algorithm Testing

The performance of the algorithm was evaluated using the simu-
lated ship deck in various scenarios. For all tests, the algorithm was
run in real time using the previously described flight computer and
camera. Unless otherwise specified, the camera was mounted to the
underside of the quadrotor UAV, with the vehicle held and moved by
hand to allow large angles and for more controlled results.
An important consideration is that the vision algorithm outputs

the pose of the ship deck relative to the camera. Therefore, all results
presented here are relative poses. Note that these poses are affected
by both the motion of the camera and the motion of the ship deck.
For all validation tests, ground truth data were provided through a

Vicon motion-capture system with eight Vicon cameras. The setup
was calibrated before each experimental session, with a final meas-
urement error of less than 0.5 mm reported by Vicon software. The
absolute poses of the object and camera recorded by the Vicon were
converted to relative poses, in order to be consistent with the vision
algorithm output. The raw algorithm output, rather than the Kalman
filtered data, is presented to more accurately evaluate algorithm
performance.
With the 3D vision algorithm, a time delay of approximately

500 ms was observed in the time stamps of logged pose estimates
compared to ground truth. This delay is due to a combination of
computational time and latency in receiving camera frames. To allow
for better visual comparison in plots, the delay is corrected for in all
real-time results presented in the paper. The root-mean-square error
(RMSE) was used to quantitatively evaluate error in real-time test
results after incorporating the time delay correction. Figure 6 provides
an example of vision algorithm output with the time delay present.

V. Comparison of Feature Detectors

Different feature detectors present critical tradeoffs for algorithm
performance. These include the number of extracted features,
matching accuracy, robustness to scale and rotation, and computa-
tional cost [16]. Therefore, it is necessary to quantitatively compare
the performance of the algorithm using different feature detectors in
controlled conditions. For this test, the feature detectors SIFT and
ORB were compared.
With the OpenCV implementation of ORB, it is also possible to

specify the maximum number of features retained from each image
(nFeatures). After features are extracted from an image, they are
ranked according to their Harris score. This score is a measure of
intensity change in all directions across the image patch. It will be

Fig. 4 Quadrotor for testing the vision algorithm.

Fig. 5 Example photographs of the ship deck used for feature and 3D point extraction, collected at each of the three camera positions.

Fig. 6 Example of vision algorithm result for roll motion with uncor-
rected 500 ms delay.
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higher for strong corners, which constitute good features, and lower

for more edgelike patches or flat patches with little variation [19]. The
highest-scoring features, up to a maximum of nFeatures, will be
retained. A smaller value of nFeatures will result in fewer features

extracted and therefore fewer possible feature matches but will
increase computational speed.

A. Feature Extraction Results

Features and their corresponding 3D points were extracted from
the ship-deck images using both SIFT and ORB. For ORB, this was

performed with nFeatures � 1000 and nFeatures � 500. The result-
ing 3D point clouds are shown in Fig. 7. ORB with nFeatures � 500
and nFeatures � 1000 results in 5131 and 10,602 unique features,

respectively, while SIFT extracted 11317 unique features.

B. Algorithm Performance Comparison

The object simulating the ship deck was placed horizontally on

the floor in front of the camera, as seen in Fig. 8. For image
collection, the camera was mounted to a miniature tripod,

allowing the camera position and pitch to be adjusted manually.
The camera was set to three different linear positions and pitch
angles, ensuring that the deck is fully visible in the image for each

position. Three photos were collected at each camera position to
account for random image noise and error. For each test case,

results were calculated for each image and averaged for each
camera position.
The resolution of the camera image is also an important consid-

eration for the vision algorithm. Extracting features from a lower-

resolution image is less computationally expensive but can result in
failure to detect smaller features in the image, especially at larger

distances from the object [1]. The algorithm was therefore tested on
images at the original camera resolution (1920 × 1080) as well as
images scaled down by 50% (960 × 540).
The mean computational times required for the algorithm, aver-

aged across all evaluated camera locations, are given in Table 1.
Note that this is the time for an entire pose estimation update, which
includes the total time to 1) extract features from the image of the

ship deck, 2) match features between the camera image and stored
data, and 3) estimate the pose of the deck.
For full-resolution images, SIFT is unacceptably slow, taking a

mean of 0.569 s to process a single image. Reducing the resolution

reduces this time dramatically to 0.164 s, though this is still longer
than the ORB detector. In contrast, for ORB, the mean computa-

tional time is not meaningfully reduced by decreased image reso-
lution. Varying nFeatures does show a significant impact, as the

computational time needed for nFeatures � 1000 is almost double
the time for nFeatures � 500.
The mean errors in pitch and position estimate, again averaged

across all three camera locations, are given in Tables 2 and 3,

respectively. For 100% resolution images, SIFT demonstrates the
highest accuracy, with an error of 0.21 deg in pitch estimation. For
ORB, an error of approximately 1 deg is observed for both values of

nFeatures. For 50% resolution images, SIFT displays very similar
results to the 100% resolution case. However, the performance of

ORB degrades with reduced resolution, with errors for both estimated
pitch and position increasing significantly. The error is especially
severe for estimated pitch with nFeatures � 1000.
Figure 9 shows the variation of error with distance from the camera

to the object for the 50% resolution images. With SIFT, the pose
estimation error is similar for all distances tested. ORB shows similar
error to SIFT when the camera is closer to the object. However, the
error increases severely when the camera moves farther from the
object, indicating ORB fails at longer distances. In particular, ORB
with nFeatures � 1000 displays a dramatic increase in error. Inspec-
tion of the matched features on the image indicates that many of the

Fig. 7 Feature extraction results with different feature detectors.

Fig. 8 Setup used for collecting images of the ship deck.

Table 1 Mean computational time for different feature
detectors and image resolutions

Feature detector 100% resolution, s 50% resolution, s

SIFT 0.569 0.164
ORB (nFeatures � 1000) 0.156 0.156

ORB (nFeatures � 500) 0.080 0.078

Table 2 Mean pitch estimation error for different feature
detectors and image resolutions

Feature detector 100% resolution, deg 50% resolution, deg

SIFT 0.21 0.23
ORB (nFeatures � 1000) 1.00 28.60

ORB (nFeatures � 500) 0.97 1.99

Table 3 Mean position estimation error for different feature
detectors and image resolutions

Feature detector 100% resolution, cm 50% resolution, cm

SIFT 6.43 6.44
ORB (nFeatures � 1000) 5.44 14.94

ORB (nFeatures � 500) 5.41 8.85
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features on the 3D object were incorrectly matched to background
details in the image. With the value of nFeatures � 1000, additional,
lower-quality features are extracted compared to nFeatures � 500.
This results in a higher number of erroneous matches. This failure is
not acceptable for simulated landing because for the experimental
algorithm tests the camera is located a distance of 50–90 cm from the
ship-deck origin.
From these results, ORB with nFeatures � 500 and 100% reso-

lution camera frames was selected for testing real-time pose esti-
mation. This combination was chosen as it provides both relatively
low computational time and acceptable performance.
An important note is that in this scenario pose estimation was

completed on single, precollected images, rather than updating and
logging continuously alongside other running scripts. Because of
this increased computational load, the update frequencies are
expected to be lower during real-time operation.

VI. Inlier Thresholding

Estimating a pose with PnP requires a minimum of four point
correspondences. However, with a small number of corresponding
points, errors in matching can result in an incorrect pose estimate.
RANSAC iterates to find an estimated pose with the highest
number of inliers, or point correspondences which are consistent
with the estimated pose. The number of inliers can be used to
evaluate the quality of a pose estimate; a small number of inliers
may mean a poor result. The quality of pose estimation could
potentially be improved by implementing a minimum threshold for
the number of inliers, rejecting any estimates that fall below this
threshold.
A vision algorithm test was completed to determine a good

threshold for inliers. Algorithm output was collected with the
quadrotor held by hand above the 3D ship deck. The quadrotor
was moved in quick, random motions in attitude and position, with
the ship deck either fully or partially in view of the camera, so as to
generate pose estimates with varying quantity of inliers. For each
pose estimate, the quantity of inliers was logged.
The attitude and position results are shown, respectively, in

Figs. 10 and 11. The raw pose estimates (no thresholds applied)
are plotted alongside data, which are filtered to remove pose esti-
mates falling below the minimum inlier threshold. It was found that
a threshold of 50 inliers yielded the best improvement in these
results.

VII. Stationary Camera and Landing Pad

A test was completed to show a baseline of performance. The
quadrotor, with camera attached, was held stationary above the
stationary 3D object, with the object fully in view of the camera.
The attitude and position results for this test are shown in

Figs. 12 and 13, respectively. These plots show very accurate
estimation of the ship-deck pose. The RMSE for pitch and roll
are less than 2 deg, while the RMSE for linear position is less than
1.3 cm on any axis.

VIII. Ship-Deck Motion

The performance of the algorithm was then evaluated for a land-
ing pad undergoing stochastic ship-deck motion. The ship-deck
motion, representing Sea-state 6, was obtained from time histories
provided in the Navy SCONE data set, representing the motions of a

Fig. 9 Pose estimation error at varying distance from the object for
50% resolution images.

Fig. 10 Estimation of relative attitude angles. Raw algorithm output is
plotted alongside results with a minimum inlier threshold applied.

Fig. 11 Estimation of relative position. Raw algorithm output is plotted
alongside results with a minimum inlier threshold applied.

6 Article in Advance / BRITCHER, CHOPRA, AND DATTA

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ar

yl
an

d 
on

 J
un

e 
28

, 2
02

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.C

03
81

61
 

https://arc.aiaa.org/action/showImage?doi=10.2514/1.C038161&iName=master.img-008.jpg&w=238&h=230
https://arc.aiaa.org/action/showImage?doi=10.2514/1.C038161&iName=master.img-009.jpg&w=238&h=210
https://arc.aiaa.org/action/showImage?doi=10.2514/1.C038161&iName=master.img-010.jpg&w=238&h=258


full-scale DDG-51 type ship [20]. The roll, pitch, and yaw motions
are generated exactly from the time history without scaling, while

the translational (surge, sway, and heave) motions are scaled to

0.5% of their original values due to the smaller scale of the exper-

imental setup. A Stewart platform with the simulated ship deck
attached, as shown in Fig. 14, was used to generate this ship-deck

motion for vision algorithm testing. The vision algorithm is used to

estimate the ship-deck pose in real time.
First, the quadrotor was held stationary above the moving ship

deck, simulating a stable hover condition. The attitude and position

results are provided in Figs. 15 and 16, respectively. The results

indicate that the algorithm can estimate the deck pose accurately in
this case, as the pose estimates closely follow the ground truth.
Next, the quadrotor was moved randomly with varying attitude

and position. This creates large, complex relative motions between

the camera and ship deck which must be captured by the vision
algorithm. The results of the test are shown in Figs. 17 and 18. The
attitude results closely follow the ground truth; the algorithm is able
to accurately capture complex pitch and roll motions in excess of
20 deg. Additionally, the estimate of Z position closely matches
ground truth. However, some errors are present in the estimates of X
and Y position, as the vision algorithm estimates do not capture all
of the rapid linear motions present in the ground truth.
The algorithm performance in both cases is quantitatively com-

pared using the RMSE of position and attitude, provided in Table 4.
With the quadrotor stationary, the attitude results show similar error
to the baseline case, though the X- and Y-position errors are
increased. With significant relative motion of the quadrotor and
platform, the X- and Y-position errors are significantly increased,
while the attitude and Z-position errors are modestly increased. The

Fig. 12 Estimation of relative attitude angles, with the quadrotor held
stationary above the ship deck.

Fig. 13 Estimation of relative position, with the quadrotor held sta-
tionary above the ship deck.

Fig. 14 Stewart platform with 3D object attached. The Stewart plat-
form is used to simulate ship-deck motion.

Fig. 15 Estimation of relative attitude angles, with the quadrotor held
stationary above the ship deck attached to moving Stewart platform.
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movement of the quadrotor introduces motion blur, which contrib-
utes to these errors. Additionally, the 3D object is only partially
visible in frame during portions of the test, resulting in fewer feature
matches and therefore increased error.

IX. Visually Degraded Conditions

The algorithm’s performance was then evaluated in visually
degraded conditions. Three conditions were specifically evaluated:
1) occlusion, 2) low illumination, and 3) glare. For all tests, the ship
deck was mounted to the Stewart platform simulating Sea-state 6
motions, with the quadrotor held stationary above the moving
platform.
The vision algorithm was first evaluated under occlusion. The

visible portions of the 3D object were partially occluded using paper

coverings, as shown in Fig. 19. The results for attitude and position

are shown in Figs. 20 and 21, respectively. The pose estimates in this

case are accurate overall, closely matching the Vicon ground truth,

with only minor noise in the pitch and roll estimates.

The algorithm performance was then evaluated for low illumina-

tion conditions. Low indoor lighting was used to create an illumi-

nation of approximately 10 lx. The results of the test are shown in

Fig. 16 Estimation of relative position, with the quadrotor held sta-
tionary above the ship deck attached to the moving Stewart platform.

Fig. 17 Estimation of relative attitude angles, with the quadrotor
moved in attitude and position above the ship deck attached to the
moving Stewart platform.

Fig. 18 Estimation of relative position, with the quadrotor moved in
attitude and position above the ship deck attached to the moving Stewart
platform.

Table 4 RMSE for ship-deck motion cases

Test case X, cm Y, cm Z, cm Roll, deg Pitch, deg

Quadrotor stationary 2.9 3.0 0.8 1.5 1.4
Quadrotor moving 5.7 6.3 1.1 2.2 2.4

Fig. 19 The 3D object simulating the ship deck with added occlusions.
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Figs. 22 and 23. The attitude and position estimates for this case are

accurate, closely matching the ground truth.

Finally, the algorithm was tested in glare conditions. A 900 lm

flashlight was used to create significant glare and shadows on the

ship deck, as shown in Fig. 24. The attitude and position estimates

are provided in Figs. 25 and 26, respectively. The roll and pitch

results acceptably follow ground truth, and the position estimates

very accurately match ground truth.

Though the overall results appear accurate, there were some

instances during the test in which the vision algorithm failed to

detect the ship deck at all due to the glare obscuring a large portion

of the ship deck. In particular, the algorithm did not successfully log

any pose estimates between the times of 12–16, 24–29, and 40–43 s

during the test. Such a failure could be problematic during an actual

ship-deck landing, as the controller will not receive any updated

ship-deck pose estimates for several seconds.
The RMSE of linear position and attitude, summarized in Table 5,

can be used to further compare each test case. The low illumination

and occlusion cases show comparable error to the ideal ship-deck

motion test, indicating the algorithm is robust to these conditions. In

the glare case, the errors are lower than in the occlusion or low

illumination conditions. However, as the algorithm failed to detect

the ship deck several times during the test, robustness in glare needs

to be further improved.

A. Feature Match and Inlier Counts

As discussed earlier, the number of feature matches and inliers

obtained during pose estimation can significantly affect the quality

Fig. 20 Estimation of relative attitude angles of a partially occluded
ship deck, with the quadrotor held stationary above the ship deck

attached to the moving Stewart platform.

Fig. 21 Estimation of relative position of a partially occluded ship
deck, with the quadrotor held stationary above the ship deck attached
to the moving Stewart platform.

Fig. 22 Estimation of relative attitude angles of a ship deck in low

illumination, with the quadrotor held stationary above the ship deck
attached to the moving Stewart platform.

Fig. 23 Estimation of relative position of a ship deck in low illumina-
tion, with the quadrotor held stationary above the ship deck attached to
the moving Stewart platform.
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of results. Therefore, analyzing these values for various test cases

can provide additional insight into algorithm performance in differ-
ent scenarios. The mean number of feature match and inlier counts

for each test case are summarized in Table 6.
The mean numbers of feature matches and inliers decrease some-

what for visually degraded conditions compared to the test cases
without added visual degradations. However, a corresponding

decrease in accuracy is not observed in pose estimation error. This
suggests that, if a sufficient number of accurate feature correspond-

ences can be obtained, additional matches may not significantly
improve accuracy. On the other hand, additional inlier matches
improve robustness to detection failure, compared to having a number

of inliers very close to the minimum threshold. This is notable in the
glare case, where pose estimates were not generated during multiple

portions of the test due to an insufficient inlier count.

X. Free-Flight Test

A simple free-flight test was performed to validate the algorithm’s
performance in hover. In hover, the vision algorithm must tolerate
vibration and small motions that are not present with a hand-held
camera.
The ship deck was secured to the floor for safety. The quadrotor

was manually piloted and held in hover above the ship deck for
several seconds. The results of the test are given in Figs. 27 and 28.
In hover, the algorithm is able to accurately estimate position and

attitude, indicating it is viable for use in actual flight. The RMSE for
pitch and roll are only 1.2 and 1.4 deg, respectively, while an RMSE
of 4 cm is present for the X-, Y-, and Z-position estimates. This
indicates that the vibrations and small motions that occur in free
hover do not significantly degrade algorithm performance.

XI. Performance Comparison with 2D Vision Methods

The performance of the 3D feature-based vision algorithm can be
further evaluated by comparing its performance to that of more
typical 2D vision methods for ship-deck landing. The 3D feature-
based algorithm offers significant advantages over 2D approaches,

Fig. 24 The 3D ship deck with glare and shadows produced by a
900 lm flashlight.

Fig. 25 Estimation of relative attitude angles of a ship deck with glare,
with the quadrotor held stationary above the ship deck attached to the
moving Stewart platform.

Fig. 26 Estimation of relative position of a ship deck with glare, with
the quadrotor held stationary above the ship deck attached to the
moving Stewart platform.

Table 5 RMSE for visually degraded conditions

Test case X Y Z Roll Pitch

Occlusion 2.2 cm 2.3 cm 0.6 cm 2.0 1.6
Low illumination 3.3 cm 3.4 cm 0.3 cm 1.5 2.4
Glare 0.9 cm 0.9 cm 0.5 cm 1.7 1.0

Table 6 Summary of mean feature matches and
inliers for each test case

Test case Mean feature matches Mean inliers

Quadrotor stationary 391 102
Quadrotor moving 383 87
Occlusion 370 75
Low illumination 342 61
Glare 370 69
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including its ability to work with 3D objects and its robustness to
large rotations; it is therefore important to investigate whether it
provides a similar level of pose estimation accuracy. For consis-

tency, the comparison will be limited to work evaluating small-
scale UAVs.
When evaluating our previously developed 2D feature-based

algorithm under similar test scenarios as those presented in this
paper, the pose estimation accuracy was found to be less than 4 cm
along each linear axis and less than 2.5 deg for pitch and roll [13].

Using a recursive AprilTag fiducial marker, Nicholson et al.
reported error in vision-based estimation of 8–23 cm in position
and 1.8–3.1 deg in rotation [11]. Using a typical H-shaped landing

target, Lin et al. observed position estimation error of 3-5 cm along
each linear axis [21].
The test results for the 3D feature-based algorithm showed 0.5–

6.3 cm of error along each linear axis and 1.2–2.4 deg of error in

pitch and roll. Its performance is therefore comparable to that of 2D
vision approaches.

XII. Increasing Algorithm Speed

The 3D feature-based algorithm is naturally far more computa-
tionally intensive than the 2D algorithm. A much larger number of
features are extracted from the 3D object across many different
camera positions, compared to the single image used for the 2D
algorithm. Approximately 1200 features were extracted from the 2D
ship-deck image, while the 3D ship-deck image set provided 5000–
13,000 features, depending on feature detector and settings. This
means that a much larger number of features must be matched in
each update, increasing computational load dramatically.
For the ship-deck tests, the algorithm was able to update at a

speed of 5–6 Hz. To be feasible for ship-deck pose estimation, at
minimum, the algorithm must update at a sufficient frequency to
adequately capture the stochastic ship-deck motion. From analyzing
Fourier transforms of the SCONE ship-deck motion histories, the
maximum frequency of ship-deck motion is approximately 0.34 Hz.
Therefore, this update frequency is adequately fast to track the
motion in real time. However, it is desirable to improve the update
speed to improve the quality of pose estimation and to minimize
delay in providing updated pose estimates to the controller. Addi-
tionally, more complex objects, such as real ships, may yield more
features and corresponding points during feature extraction than the
simplified object used here, increasing computational load. It is
therefore important to explore techniques to potentially decrease
computational time and increase update speed.

A. Filtering Visible Features

When updating the algorithm using a new frame, features detected
in this frame are matched to features previously extracted from the 3D
ship deck. However, only a subset of the features on the 3D ship deck
will actually be visible in any single camera image. As feature
matching is one of the most computationally demanding steps in
the algorithm, restricting feature matching only to these visible
features could potentially improve the speed of the algorithm.
The feature extraction process tracks which features are visible in

each camera pose. From this, we can determine the ship-deck
rotations where each feature should be visible. During real-time
pose estimation, an initial pose estimate can be used to restrict
feature matching in the next update to points visible in nearby
rotations. The details of this process are described in the following
subsections.
For this process, rotations were stored and processed as quatern-

ions. This improves computational efficiency and allows necessary
mathematical operations to be performed; in particular, using qua-
ternions, it is possible to calculate distances between rotations as a
single angle. Additionally, methods have been developed to effi-
ciently compute the average of multiple quaternions [22].

B. Process for Filtering Visible Features

For each image of the ship deck used in feature extraction, there is
an associated camera pose. Its orientation is stored as a rotation
vector, which is converted to a quaternion representation for the
filtering process. The visible rotations of each feature were obtained
using the following procedure:
1) From the feature extraction results, we can recover the camera

poses where a feature on the ship deck is visible. Each camera pose
corresponds to a rotation.
2) Features may be visible in multiple camera poses. However,

comparing multiple rotations for each feature is less computation-
ally efficient than comparing a single rotation. Therefore, an average
rotation for each feature is found by calculating the average of
quaternions for all rotations where the feature was detected.
3) The average rotation for each feature is then stored in an array.

Once this has been repeated for all of the features, save this array
with the features and 3D points for later use.

Fig. 27 Estimation of relative attitude angles, with the quadrotor

hovering above the ship deck.

Fig. 28 Estimation of relative position, with the quadrotor hovering
above the ship deck.
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The pose estimation process is modified to include this filtering.

This is described in the following:
1) Choose a rotation threshold for a feature to be considered

visible. When calculating the distance between rotations, if a rota-
tion is within this threshold, it will be considered visible. The
threshold should be large enough to account for reasonable
differences between the camera pose and feature rotations, as well
as movement of the camera and platform between algorithm
updates.
2) Obtain an initial ship-deck rotation. This is done by matching

image features to all of the saved object features, the same as in the
original algorithm.
3) For each stored feature, calculate the distance between its

rotation and the initial rotation. Create a modified list of features
which meet the rotation threshold.
4) Complete the feature matching step using the modified list of

features. Use this to find an updated pose estimate.
5) Repeat this process while the ship deck is in view of the

camera. Each time a new pose estimate is obtained, the pose is used
for the initial rotation in the next step.

Figure 29 illustrates the steps in this procedure.

C. Performance Comparison

Basic validation of the computational speed and accuracy of the

algorithm with this added filtering was then performed. Four cases

were compared: 1) filtering with a rotation threshold of 60°, 2) a
rotation threshold of 75°, 3) a rotation threshold of 90°, and 4) no

filtering of visible features. The 111 initial images of the ship deck

were used for this test. The images were provided in sequence to the

algorithm, and the pose estimates from the algorithm were com-

pared to the ground truth poses of the ship deck.

One goal of the visible feature filtering is to make slower feature

detectors viable for real-time pose estimation. Because of this, the

validation test used the feature detector ORB with nFeatures � 1000,
which required long computational times in earlier tests.

The results for computational time are provided in Table 7. The

visible feature filtering results in a significant decrease in computa-

tional time compared to the algorithm without added filtering. This

computational time decreases with smaller rotation thresholds.

The RMSE results for position and attitude are provided in

Table 8. The error in estimated position is similar to the baseline

case for both the 75° and 90° thresholds but increase slightly for the
60° case. For the estimated roll and pitch, the error is modestly

increased for the 60° and 75° cases. However, a larger increase in

error is seen with the 90° rotation threshold.

From these results, visible feature filtering can be used to improve

the vision algorithm’s computational speed, but a tradeoff must be

made with the accuracy of the results.

XIII. Conclusions

This work developed a new feature-based algorithm to estimate

the pose of a 3D ship deck. The algorithm was incorporated into

onboard quadrotor vision hardware and thoroughly validated using

a simulated 3D ship deck with a Stewart platform. Algorithm

performance with different feature detectors, specifically ORB and

SIFT, was quantitatively evaluated. The algorithm was demon-

strated to be capable of estimating ship-deck pose in real time under

ideal conditions, Sea-State 6 ship-deck motion, and visually

degraded conditions. Logged pose data were compared to Vicon

ground-truth data. From these results, one can draw the following

conclusions:
1) It is possible to use 3D computer vision to extract the pose of

the ship deck using matched features.
2) The algorithm demonstrates robustness to low illumination and

occlusion and was able to estimate the pose of the moving ship deck
accurately in these conditions. However, the algorithm performance
degraded in the glare condition, as it failed to detect the ship deck
for several seconds during the test.
3) In ideal visual conditions, the 3D algorithm is capable of

estimating the pose of a stationary ship deck as well as a ship deck
undergoing Sea-State 6 motion.
4) Different feature detectors present tradeoffs for real-time per-

formance. SIFT is accurate even at longer distances from the ship
deck but is very computationally slow; ORB performs poorly at
longer distances but is much faster, making it viable for real-time
use on the quadrotor computer hardware.

Fig. 29 Images illustrating the steps in filtering visible features.

Table 7 Mean computational time for
visible feature filtering with different

rotation thresholds

Test case Mean computational time, s

60° threshold 0.108

75° threshold 0.122

90° threshold 0.139

No filtering 0.199

Table 8 RMSE for visible feature filtering
with different rotation thresholds

Test case X, cm Y, cm Z, cm Roll Pitch

60° threshold 0.2 0.6 1.0 3.9 3.1

75° threshold 0.2 0.5 0.8 3.9 2.6

90° threshold 0.2 0.6 0.8 4.0 5.2

No filtering 0.2 0.5 0.8 3.7 2.6
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5) The 3D feature extraction process produces a large number of
features, which has a significant penalty to algorithm speed due to
the large number of features that must be matched. By determining
which features are visible based on an initial orientation, and
matching only to these features, it is possible to improve algorithm
update speed significantly. However, this comes at the cost of
increased error in pose estimation.
6) Filtering pose estimates based on the number of inlier points

can improve the quality of algorithm output by removing poor
quality results.
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