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The objective of this work is to refine and experimentally characterize a two-dimensional, feature-based vision algorithm for
tracking a stochastically moving ship-deck under degraded visual conditions. A 2.75-kg quadrotor UAV (unmanned aerial
vehicle), with only the accessories essential for vision-based navigation, is specifically designed to establish the minimal sys-
tem requirements, fabricated, and tested in-house. The algorithm was integrated into this quadrotor and was performance
tested in controlled, hand-held tests as well as piloted free-flight hover. All results were validated against Vicon ground-truth
data. In the controlled tests, the algorithm was first used to estimate the motion of a Stewart platform simulating a stochasti-
cally moving ship-deck. Next, tests were conducted under visually degraded conditions, specifically glare, low illumination,
and occlusion of the landing pad. Free-flight tests were conducted with the quadrotor hovering above the landing pad at
varying levels of illumination and occlusion as well as with ship-deck motion. The algorithm could accurately estimate the
pose of a ship-deck undergoing Sea-state 6 motions in visually degraded conditions in both hand-held and free-flight tests.
Performance was observed to reduce slightly in free-flight compared to hand-held tests due to aircraft motion and vibration.

Nomenclature

vk observation or measurement noise in Kalman filter
wk process noise in Kalman filter
xk, yk, zk position at time k
ẋk, ẏk, żk derivative of position at time k

Abbreviations

ESC electronic speed controller
IMU inertial measurement unit
RMSE root mean square error
ROS Robot Operating System
SIFT scale invariant feature transform
UAS uncrewed aerial system
UAV unmanned aerial vehicle

Introduction

Landing a helicopter on a moving ship-deck is one of the most chal-
lenging and dangerous tasks for a human pilot. Therefore, the overall
objective of this research is to work towards developing autonomous,
vision-based ship-deck landing, which will significantly improve safety
for pilots.

Many previous studies have addressed the problem of vision-based
rotorcraft landing, with most focusing on multirotor UAVs (unmanned
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aerial vehicles) landing on stationary or linearly moving targets.
Several approaches have been explored for detecting the landing target.
This includes fiducial markers or tags, such as ArUco markers (Refs.
1–3), simple custom-designed tags (Refs. 4, 5), or lights or markings
on the landing pad (Ref. 6). Feature detection and matching have also
been used to detect known areas of ground terrain near a landing location
(Ref. 7). Recently, machine learning approaches have been investigated
(Ref. 8).

Some research has investigated the specific problem of landing on
ship-decks using vision. Ship-decks produce large, stochastically oscil-
lating motions, introducing significant difficulties to both visual tracking
and safe landing. Similarly to the more general work on rotorcraft land-
ing, previous work on ship-deck landing has mainly utilized simple vi-
sual references to detect ship-deckmotion. This includes fiducial markers
(Refs. 9, 10), H-shaped landing targets (Refs. 11, 12), and arrangements
of lights or targets (Refs. 13–15). Detecting ship structures using ma-
chine learning techniques has been explored in more recent work
(Refs. 16, 17).

Our previous work investigated the use of vision for ship-deck land-
ing, particularly for tracking stochastic ship-deck motion in high sea
states, where severe oscillations are present. As described in our confer-
ence paper (Ref. 18), it was validated that a ship-deck could be detected
and tracked using only vision with a single camera. A quadrotor was
developed in-house to demonstrate tracking and landing on a stochasti-
cally moving ship-deck. A fiducial-based algorithm, which detects the
pose (position and orientation) of an AprilTag marker on the ship-deck,
was used and executed on the quadrotor using an onboard flight com-
puter. In experimental tests, the algorithm was able to detect and track
the ship-deck at various oscillation frequencies as well as for stochastic
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motion. However, the fiducial-based algorithm fails in visually degraded
conditions, including for any type of occlusion on the marker, since the
entire marker must be clearly visible for detection and pose estimation.

To rectify this deficiency, a new feature-based vision system was de-
veloped gradually as reported in our conference papers (Refs. 19, 20).
While feature detection has been investigated for rotorcraft landing
(Ref. 7), this technique has not been previously used to track the pose
of a moving landing platform. This new algorithm is intended to accu-
rately track the pose of a ship-deck in both ideal and visually degraded
conditions. It was verified to be robust to occlusions and illumination dif-
ferences under simple bench-top test conditions. This algorithm is also
capable of working with generic landing pad patterns, unlike the fiducial-
based algorithm, which requires a predesigned tag. However, the feature-
based algorithm was not previously implemented on an actual aircraft. It
is also significantly more computationally intensive than fiducial detec-
tion algorithms, requiring a more powerful and physically larger onboard
flight computer.

This paper documents the final feature-based algorithm and its ex-
perimental validation. First, the development of a larger quadrotor UAV
incorporating the new flight computer is described. Next, we provide the
results of controlled algorithm testing for ship-deck motion and under
visually degraded conditions. Finally, the algorithm performance is eval-
uated for free flight, in visually ideal and visually degraded scenarios.

Quadrotor Development

The vision algorithmmust function using only onboard computer and
vision hardware, as ship-deck landings may occur in isolated locations or
poor weather, where external communication is unreliable. The feature-
based vision algorithm is computationally intensive, requiring a powerful
onboard computer to operate in real time. However, due to physical size
and weight constraints, it was not possible to integrate the required com-
puter into the older quadrotor used for the demonstration of our fiducial-
based algorithm. Additionally, due to the need to customize the onboard
vision and computer hardware based on research requirements, devel-
oping a custom quadrotor in-house was necessary over utilizing an off-
the-shelf UAV. As a result, we have developed a much larger quadrotor
UAV sized, designed, and fabricated around this new computer and other
ancillary hardware.

Flight computer

While the feature-based algorithm is more capable than our previous
fiducial-based system, it is also much more computationally intensive.
An UP Xtreme embedded computer, featuring an Intel i5 processor, was
selected for the large quadrotor UAV.

This computer is able to update the vision algorithm at a maximum
rate of 12 Hz in benchtop tests. In contrast, the computer used in previous
experiments is only capable of updating the feature-based algorithm at a
rate of 0.7 Hz, far too slow for real-time operation (Ref. 19).

Structure and specifications

The new, larger quadrotor was developed and fabricated in-house us-
ing a combination of in-house custom-built and off-the-shelf compo-
nents. The overall specifications of the final aircraft are listed in Table 1.
A CAD model of the quadrotor was first developed as shown in Fig. 1,
with the overall layout and major components. The mass and moments
of inertia were estimated from CAD software. In designing and choos-
ing components for this UAV, we kept in mind future modifications and
possible hardware additions. Therefore, the quadrotor was designed to
be larger and to carry a greater payload than the current test hardware.

Table 1. Quadrotor characteristics

Parameters Value

Gross takeoff mass 2.75 kg
Rotor spacing (x and y ) 0.45 m
Rotor diameter 0.229 m
Rotor RPM at hover 7300 RPM
Center of mass (x) −0.020 m
Center of mass (y ) 0.0 m
Ixx 0.0350 kgm2

Iyy 0.0699 kgm2

Izz 0.1018 kgm2

Battery mass 1.0 kg
Hover endurance 12.8 min

This allows components to be added in the future with fewer weight or
geometric constraints.

The new quadrotor has a frame size of 450 mm × 450 mm (measured
from the centers of the motors) and a gross take-off weight of 2.75 kg.
This is much larger than the previous quadrotor, which had a frame size
of 270 mm × 270 mm. The frame is constructed of 0.5 inches (12.7 mm)
6061-T6 rectangular aluminum tubes with 1/16 inch (1.59 mm) wall
thickness. The 6061 aluminum alloy offers greater strength compared to
the 6063 aluminum alloy used in the previous quadrotor. The tubes are ar-
ranged in an H-shape and attached with steel L-shaped corner brackets,
similar to the configuration used in the previous quadrotor. Aluminum
tubes were chosen because they provide structural strength and stiffness
while being easy to machine.

The key components, namely the flight computer, flight controller,
batteries, and camera, are mounted to laser-cut acrylic plates mounted
to the frame. If any components need to be changed or rearranged, or if
these acrylic plates are damaged in a crash, these items can be quickly
re-cut with in-house laser cutters and replaced.

The motor mounts and landing gear were also custom-designed and
produced using in-house additive manufacturing facilities. They were
printed using a Markforged Mark 2 three-dimensional (3D) printer us-
ing Onyx, a micro carbon fiber filled nylon material. Additional strength
was provided through printed carbon-fiber reinforcement layers.

A photograph of the assembled quadrotor is shown in Fig. 2.

Propulsion and power

The vehicle features four 9-inch diameter, three-bladed rotors, driven
by T-Motor Cine66 925KV 2812 brushless electric motors. Using
manufacturer-provided test stand data for this motor/rotor combination,
we calculated a maximum hover endurance of 12.8 min.

The four motors are driven by a Holybro Tekko32 4-in-1 electronic
speed controller (ESC). This ESC supports a maximum current of 65 A
for each motor. While the motor current is typically well below this level,
in the case of sudden maneuvers or transients, this provides a factor of
safety above the maximum motor current provided in test data.

Separate lithium polymer batteries are used to power the motors and
avionics. A 1500mAh, four cell (14.8 V), 120C battery powers the avion-
ics, including the flight computer. Another 6000 mAh, six cell (25.2 V),
50C battery is used to power the motors via the ESC.

Avionics and control

The flight control loop used for attitude control and stabilization is
executed on a Teensy 4.0 microcontroller with an ARM Cortex-M7 pro-
cessor, which is capable of updating the attitude control loop at 1000 Hz.
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Fig. 1. CAD diagram of new quadrotor showing major components and axes system. Note that the z-axis is positive down.

Fig. 2. Photo of the new larger quadrotor.

A ST LSM6DSOX inertial measurement unit (IMU), incorporating a gy-
roscope and accelerometer, is used tomeasure angular velocity and linear
acceleration along three axes, respectively. The Teensy communicates
with the IMU through the I2C communication protocol and collects up-
dated measurements on each control loop update. The Teensy then sends
commands for each motor to the ESC using the digital DShot protocol.

The flight controller receives commands from a 2.4-GHz radio re-
ceiver using a universal asynchronous receiver and transmitter, a serial
communication method, utilizing an open-source library to read each
message. This receiver is paired with a transmitter, enabling an opera-
tor to manually control the quadrotor.

The flight controller stabilizes attitude with nested proportional-
integral-derivative controllers. The inner control loop takes in desired an-
gular rates and outputs desired moments. These moments are converted
to motor commands using a control mixer. Gyroscope measurements are
used to calculate the current angular rates. A Kalman filter is applied to
the raw gyroscope measurements before sending to the controller in or-
der to filter noise and produce more reliable angular rate estimates. The
outer control loop takes in desired attitude angles and outputs desired

angular rates, which are sent to the inner loop controller. A Kalman filter
fuses measurements from the accelerometer and gyroscope to produce
estimated attitude angles.

Vision hardware

Images of the ship-deck are collected using a See3CAMUSB camera,
manufactured by e-con Systems. This is the same camera previously used
for initial benchtop testing of the feature-based algorithm. The camera
is mounted on the underside of the quadrotor, facing downward. This
camera features a built-in autoexposure algorithm, which automatically
varies the camera shutter speed for varying light intensity received by
the camera. This allows the camera to compensate for a wide range of
scene illumination, though at the cost of increased motion blur for low
illumination levels.

Vision Algorithm

In this paper, we experimentally validate the performance of the
two-dimensional (2D) feature-based algorithm we developed earlier in
Ref. 19. The algorithm is briefly described here for completeness.

For this work, functions provided in OpenCV, an open-source com-
puter vision library, were used for various image-processing tasks, such
as image reading and scaling. Additionally, we utilized feature detection
and matching functions provided in OpenCV.

Feature extraction and matching

Features, in this context, can be described as small patches of interest
in an image. Features should preferably be invariant to transformations
in scale, translation, in- and out-of-plane rotation, and illumination.

Locations of interest in an image are typically found by detecting
strong corners or blobs, which have significant intensity variation in both
directions. Image patches at these locations are extracted and converted
to feature descriptors, which are a numerical representation of the image
patch. Extracted features can be matched to find corresponding points
across multiple images.

SIFT algorithm

The scale-invariant feature transform (SIFT) algorithm, developed by
Lowe (Ref. 21), is a commonly used algorithm for feature detection and

012009-3



V. BRITCHER JOURNAL OF THE AMERICAN HELICOPTER SOCIETY

Fig. 3. Flowchart illustrating the steps in the vision algorithm.

extraction. The algorithm generates vectors of length 128 as feature de-
scriptors. The algorithm is invariant to changes in scale and translation
and is somewhat resilient to changes of in- and out-of-plane rotation and
illumination.

Good SIFT features should be distinctive, meaning that these fea-
tures can be reliably matched across multiple images with few incorrect
matches. Good features typically consist of corner- or blob-like regions
with high contrast. Low contrast or nondistinctive features are undesir-
able for feature-matching tasks.

For this work, we utilized an implementation of SIFT provided in
OpenCV.

Ship-deck detection algorithm

The present algorithm detects and extracts SIFT features in images of
the moving ship-deck. These features were matched to features extracted
from a reference image of the landing pad.

The following procedure was used to detect and estimate the pose of
the ship deck:

1) First, extract SIFT features from a reference image of the pattern
located on the ship-deck. Any image may be used with the algorithm, but
an image with many good SIFT features is preferable.

2) Load the most recent frame from the quadrotor camera and extract
SIFT features from the image.

3) For each feature in the reference image, find the two closest
matches (best and second best match) in the features extracted from the
camera image. The distance between features is found by calculating the
L2-norm of the difference between the feature descriptors.

4) Filter out poor matches using a series of tests: (1) Lowe’s ratio
test: the ratio of the calculated distance for the best and second best match
must be below a threshold, 0.8 in this case (Ref. 21); (2) Symmetry test:
the best feature match from the reference image to the camera frame
should also be the best match from the camera frame to the reference
image; (3)Distance test: the distance to a matched feature should be less
than the minimum distance across all matches multiplied by a constant,

3 in this case. A match that fails any of these tests will be removed as a
bad match.

5) A minimum of four matches are required to calculate a homogra-
phy, or linear transformation, from the reference image to the camera im-
age. If at least four feature matches are found after filtering poor matches,
proceed with the following steps. Otherwise, report that the deck was not
detected.

6) Use the Random Sample Consensus (RANSAC) algorithm to find
a good homography. This algorithm works by repeatedly taking random
samples of the matched points, which are used to calculate a homogra-
phy. The remaining matched points are checked for consistency with the
estimated homography. This procedure produces a result that is robust to
outliers (Ref. 22).

7) Use the homography to transform the corners of the deck image.
Verify that the transformed points are geometrically valid by checking
that the transformed deck corners form a convex quadrilateral. If this is
the case, then compute the pose of the deck, or its position and orientation
in 3D relative to the camera (Ref. 23).

Algorithm implementation

Figure 3 illustrates the processing steps in the vision algorithm. The
filtering and refinement steps, applied to the initial pose estimate obtained
using the procedure discussed above, are discussed in the next section.

The feature-based vision algorithm was written in Python and im-
plemented on the quadrotor for real-time operation. As discussed earlier,
the OpenCV library was used for basic computer vision functions. It used
ROS (robot operating system) 2, a set of robotics software libraries, for
asynchronousmessaging between individual processes, or nodes. The vi-
sion algorithm and logging runs on a single node. A separate node con-
tinuously retrieves frames from the camera and publishes them on a topic
or a bus, allowing communication between nodes. The vision node sub-
scribes to this topic, collecting updated camera frames as needed. Using
ROS, the vision node can then publish the pose estimates, making this
data available to other nodes such as a ship-deck tracking controller.
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Algorithm Validation

Before this vision algorithm can be used for autonomous tracking
and landing, it is necessary to validate the algorithm’s performance and
reliability under varying conditions. For validation, hand-held and free-
flight hover tests of the vision algorithm were conducted.

A primary motivation for the feature-based algorithm is its robustness
to visually difficult conditions, compared to fiducial-based approaches,
where even minor visual degradation will result in detection failure. The
algorithm should provide usable estimates of the pose of the landing tar-
get under visually degraded conditions; because of this, it is necessary to
investigate conditions where the performance of the feature-based algo-
rithmmay deteriorate. Data was collected for visually ideal conditions—
in this context, typical indoor lighting and no added occlusions or lighting
limiting visibility of the landing image—as well as under various types
of visual degradation.

First, several large-angle controlled tests, in which the quadrotor was
held by hand, were carried out for ideal and visually degraded conditions.
Next, tests were conducted in free-flight hover. Ground truth data was
collected using a Vicon motion-capture system, which tracked the true
pose of the quadrotor and landing target during tests.

For all tests, quadrotor yaw was held constant. Only minimal yaw
motion was present in the ship-deck motion time histories. Due to the
lack of yaw motion, and the greater importance of linear, roll, and pitch
motions in landing, yaw results are omitted from result plots.

In all tests, images from the camera were scaled down by one-half
from their original resolution of 1920×1080 pixels and were processed
by the vision algorithm at a resolution of 960×540 pixels. This was
needed because feature extraction is much more computationally expen-
sive at higher resolutions, causing the algorithm to update too slowly for
real-time operation.

It is important to note that the vision algorithm calculates the pose
of the landing pad image relative to the quadrotor camera. This means
that the relative pose is affected by both the movement of the quadrotor
and the landing pad. Vicon ground truth data is also provided here as a
relative pose, which is extracted from the true poses of the quadrotor and
landing target in the world frame.

Initial Algorithm Validation and Refinement

Before evaluating more complex scenarios, simple initial hand-held
tests were completed to provide baseline performance and uncover basic
limitations in the algorithm, such as time delays. Though the feature-
based algorithm can function in visually degraded scenarios, such con-
ditions may potentially cause errors in the pose estimates from the al-
gorithm. Therefore, this section also discusses techniques to refine the
algorithm output.

Time delays and update frequency

From benchtop testing, a time delay of approximately 400ms was ob-
served in the timestamps of logged pose estimates compared to ground
truth. This was further verified by examining logged data from hand-
held testing. The delay is caused by a combination of two factors: (1)
the computational time needed to compute a pose estimate and (2) la-
tency in retrieving and publishing frames from the camera. The length of
the delay may be reduced with improved hardware or through software
optimizations, but cannot be entirely eliminated, and therefore must be
accounted for during real-time tracking and landing.

As the time delay is consistent, the plotted results in this paper are
shown with the pose estimate times shifted to remove the delay. This
allows for better visual comparison in plots. Additionally, this allows us

Fig. 4. Example of vision algorithm result for large roll motions with
uncorrected 400 ms time delay.

to quantitatively measure error using methods such as RMSE (root mean
square error). Figure 4 shows an example of vision data with the delay
present.

The vision algorithm is computationally expensive, resulting in long
delays between updates. In these tests, the algorithm demonstrated an
update speed of approximately 9–11 Hz with the deck in frame. This
was found to be adequately fast to estimate ship-deck oscillation, which
displayed a maximum frequency of 0.34 Hz in the Navy SCONE dataset
(Ref. 24). However, the low frequency of algorithm updates makes poor
individual pose estimates problematic without additional filtering.

Baseline conditions

The algorithm’s performance was evaluated under ideal, static condi-
tions. This verified that the algorithm was producing the expected results
and provided a baseline level of performance.

The test was conducted under normal indoor lighting (300 lux) and
with the landing pad secured to a fixed, horizontal position on the floor.
The quadrotor was held stationary above the landing pad, with the image
fully in view of the camera, for several seconds.

The attitude and position estimation results are shown in Figs. 5 and
6. The estimates of both linear position and attitude had minimal error.
The final RMSE of the linear position is below 1.3 cm on all axes. Roll,
pitch, and yaw have an RMSE of 0.8, 1.4, and 1.5 deg, respectively.

Reference image selection

The feature-based algorithm can be used with any generic reference
image as long as a sufficient number of features can be reliably detected
and matched. This means that the existing markings on a ship-deck heli-
pad could potentially be used as a reference image. However, these mark-
ings have relatively few good features compared to a custom, detailed
reference image.

Algorithm performance was compared using two different reference
images. The first, shown in Fig. 7(a), consists of a grid of AprilTag mark-
ers. This pattern was selected as it is rich in distinct, high-contrast fea-
tures. The second image, shown in Fig. 7(b), is representative of typical
helicopter landing pad markings.

The test was conducted under normal indoor lighting (300 lux). The
quadrotor was held stationary above a landing pad with linear and atti-
tude motion, keeping the image fully within the camera frame. The same
motion trajectory was used for both images for consistency.

The RMSE results, given in Table 2, indicate a significant increase
in pose estimation accuracy with a detailed, customized landing pad im-
age compared to typical landing pad markings. This difference can be
explained with the greater number of strong, distinctive features in the
detailed image compared to the typical landing pad. This results in a
greater number of feature matches between the reference and camera

012009-5



V. BRITCHER JOURNAL OF THE AMERICAN HELICOPTER SOCIETY

Fig. 5. Estimation of aircraft attitude angles relative to a stationary
landing marker from onboard camera.

Fig. 6. Estimation of aircraft position relative to a stationary landing
marker from onboard camera.

Table 2. RMSE for different reference images.

Test Case X (cm) Y (cm) Z (cm) Roll (deg) Pitch (deg)

Customized image 0.4 0.5 1.2 1.6 1.6
Typical landing image 1.6 2.0 2.0 2.2 5.0

image. With the customized image, an average of 369 feature matches
were obtained in each update; however, for the helipad markings, only
40 matches were obtained on average.

These results show that, while it is feasible to use a feature-matching
algorithm with existing ship-deck markings, a customized image with
many good features is ideal for good algorithm performance. The feature-
rich image evaluated here is, therefore, used in all subsequent tests in this
paper.

Feature match and inlier thresholds

Calculating a homography requires a minimum of four feature
matches. However, with a small number of feature matches, incorrect
matches can cause the calculated homography to be incorrect. When ex-
ecuting RANSAC, the number of inliers, or feature matches consistent
with the homography, is calculated. The number of inliers is also useful
to determine the quality of a pose estimate; a small number of inliers may
indicate a poor result. The algorithm output could, therefore, be improved
by implementing minimum thresholds for both the number of good fea-
ture matches and the number of inlier matches and rejecting images that
fall below these thresholds.

A vision algorithm test was completed to determine good match and
inlier thresholds. Algorithm output was collected with the quadrotor held
by hand above a stationary landing pad. The quadrotor was moved in
quick, random motions in attitude and position, with the landing pad
either fully or partially in view of the camera. For each pose estimate,
the number of feature matches and inliers were logged. This was in-
tended to generate pose estimates with varying numbers of matches and
inliers.

The attitude and position results are shown in Figs. 8 and 9. The raw
pose estimates with no thresholds (raw data) correspond to the output of
the previously developed vision algorithm (Ref. 19). These results are
plotted alongside data which is then filtered to remove pose estimates
falling belowmatch and inlier thresholds (thresholding). The unmodified
vision algorithm produces a number of inaccurate and noisy pose esti-
mates, particularly in roll and pitch; this inaccuracy was also observed
during experimental testing in visually degraded conditions (Ref. 20).
However, these poor estimates are removed with the added threshold-
ing. The ideal minimum threshold for feature matches was found to be
25, while the best threshold for inliers was found to be 17. These val-
ues were chosen to reject a majority of inaccurate pose estimates while
minimizing false rejections.

As shown in these results, applying feature match and inlier thresh-
olds improves the pose estimates significantly, removing almost all of
the poor estimates. These thresholds were incorporated into the vision
algorithm and were applied to all tests later in this paper.

Kalman filters

A Kalman filter was also integrated into the vision code, providing
filtered estimates of the ship-deck pose alongside the unfiltered estimates.
The filter can mitigate potential noise and errors in the algorithm output
with minimal computational cost.
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Fig. 7. Reference images evaluated using vision algorithm. (a) Detailed reference image composed of an AprilTag marker grid. (b) Image
representative of typical ship-deck landing pads.

Fig. 8. Estimation of aircraft attitude angles relative to a stationary
landing marker from onboard camera. Results are compared with
andwithout the application of featurematch and inlier thresholding.

The logged data for linear positions (X, Y, and Z positions) was pro-
cessed using a 3D constant-velocity Kalman filter, shown below.
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ẏk
zk
żk
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where xk, yk, and zk are the linear position at timestep k. A separate
Kalman filter, using the same constant-velocity model, was also used to
process the estimated Euler angles (roll, pitch, and yaw).

The Kalman filter was integrated into the vision algorithm directly,
filtering raw position and attitude estimates produced from ship-deck
tracking. The code logs both raw and filtered pose estimates, allowing
both outputs to be evaluated.

Fig. 9. Estimation of aircraft position relative to a stationary land-
ing marker from onboard camera. Results are compared with and
without the application of feature match and inlier thresholding.

Hand-Held Tests

A series of tests were conducted to evaluate the feature-based algo-
rithm’s performance in various scenarios in a controlled manner. Two
cases were investigated and are discussed below: (1) tracking ship-deck
motion in ideal visual conditions; (2) tracking under visually degraded
conditions. The quadrotor was held by hand above the landing pad. This
setup removes the effects of vibration and motion present in free flight,
allowing evaluation of different scenarios without introducing additional
difficulties. It also allows for exaggerated pitch and roll motions of the
UAV to stress the robustness of the algorithm. Such motions would be
impractical to recreate in free flight.
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Fig. 10. Small Stewart platform with attached landing pad image.

Fig. 11. Estimation of aircraft attitude angles relative to a mov-
ing Stewart platform from onboard camera, with aircraft held
stationary.

For all tests, the landing pad image was attached to a small Stewart
platform (Acrome Stewart Pro) capable of generating linear and rota-
tional motions, shown in Fig. 10. The platform follows a motion trajec-
tory representing Sea-state 6, obtained from ship-deck motion histories
provided in the Navy SCONE database (Ref. 24). The motion is stochas-
tic and predominantly features large roll motions of up to 15 deg with
smaller variations in pitch and linear position. This allows algorithm per-
formance to be evaluated with realistic ship-deck motions.

For clarity, only the vision algorithm output after match and inlier
thresholding is shown in this section, labeled as “Vision.” The Kalman
filtered output is omitted.

Fig. 12. Estimation of aircraft position relative to a moving Stewart
platform from onboard camera, with aircraft held stationary.

Tracking ship-deck motion

After validating the baseline performance of the vision algorithm, it
is then demonstrated for tracking ship-deck motion in ideal visual con-
ditions. The Stewart platform used for these tests, with landing pad at-
tached, is shown in Fig. 10.

First, the quadrotor is held stationary above the moving Stewart plat-
form, simulating a stable hover above the ship-deck. In this scenario, the
algorithm can correctly follow the movement of the platform, estimat-
ing both attitude and position with minimal error, as shown in Figs. 11
and 12.

Next, the quadrotor is moved with an arbitrarily varying pitch, roll,
and linear motions above the stochastically moving platform. As the
quadrotor was held by hand, it was possible to produce pitch motions of
up to 15 deg and roll motions exceeding 20 deg. As shown in the results
in Fig. 13, the algorithm is able to accurately follow complex variations
of pitch and roll. The results for the Z-position are again very precise,
as indicated in the results in Fig. 14. However, some errors appear in the
estimates of X- and Y-positions.

The RMSE values, given in Table 3, provide a quantitative measure of
algorithm performance in these scenarios. For ship-deck motion alone,
the errors in pose estimation are very low. However, these errors increase
with significant motion of both the ship-deck and quadrotor. During an
actual landing, the quadrotor waits for a quiescent period when the deck’s
orientation and rate of change are small. As observed from the results,
the algorithm is able to estimate orientation satisfactorily. In contrast,
the estimate of linear position is used in the quadrotor control loop to
track the deck, in order to remain above the target for landing. The po-
sition errors from the logged data are small compared to the quadrotor
size; additionally, the quadrotor will land on a much larger deck than the
one tested in these experiments. As a result, these errors are unlikely to
interfere significantly with landing.
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Fig. 13. Estimation of aircraft attitude angles relative to a moving
Stewart platform from onboard camera, with aircraft also moving.

Fig. 14. Estimation of aircraft position relative to a moving Stewart
platform from onboard camera, with aircraft also moving.

Table 3. RMSE for ship-deck motion

Roll Pitch Yaw
Test Case X (cm) Y (cm) Z (cm) (deg) (deg) (deg)

Quadrotor stationary 0.6 0.5 1.4 0.5 1.0 1.3
Quadrotor moving 3.5 3.5 1.5 1.3 1.3 1.5

Table 4. RMSE for visually degraded test cases

Roll Pitch Yaw
Test Case X (cm) Y (cm) Z (cm) (deg) (deg) (deg)

Low illumination 1.5 1.2 1.4 0.8 1.5 1.3
Glare 1.5 1.2 1.1 0.6 1.4 1.3
Occlusion (regular) 1.4 1.4 1.3 1.1 1.2 1.3
Occlusion (irregular) 1.5 1.9 1.7 1.7 2.0 1.7
Increased camera 1.4 1.2 1.2 1.9 1.9 1.4

distance

Fig. 15. Estimation of aircraft attitude angles relative to a landing
pad undergoing ship-deck motion under low (10 lux) illumination.

Visually degraded conditions

A critical advantage of the feature-based algorithm is that it offers ro-
bustness to occlusion or varying lighting conditions, where the fiducial
algorithm will fail outright. We previously demonstrated this robustness
in benchtop tests. A series of tests were completed to analyze perfor-
mance under visually challenging conditions onboard. In all tests, the
quadrotor was held stationary above the moving Stewart platform. Three
specific cases were evaluated: (1) low illumination, (2) glare, and (3)
occlusion. The errors for each case are given in Table 4; each case is
described in more detail below.

The first test evaluates the algorithm in low illumination conditions.
Dark indoor lighting, approximately 10 lux, was used for this test case.
The results of this test are provided in Figs. 15 and 16. The pose esti-
mates are not significantly degraded by the low illumination condition,
as shown by both the quantitative error calculations and the close match
in the plots between the estimated and ground truth poses.

The second test evaluates the algorithm under glare. A 900-lumen
flashlight was mounted above the landing pad, creating significant glare
on the image, as shown in Fig. 17. This setup is intended to simulate
glare, such as when bright lights or reflections are present on a real ship-
deck. The test was also conducted under low illumination (10 lux) to
increase the effect of this glare. The resulting attitude and position es-
timates are provided in Figs. 18 and 19. The estimates of attitude and
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Fig. 16. Estimation of aircraft attitude angles relative to a landing
pad undergoing ship-deck motion under low (10 lux) illumination.

position again closely follow the ground truth, indicating that the algo-
rithm can perform acceptably in this condition. The RMSE results show
comparable error to the low illumination case.

Finally, tests were completed to observe the performance of the algo-
rithm for a landing pad under significant occlusion. Paper coverings are
placed to occlude a portion of the image, as shown in Fig. 20. Two test
cases were evaluated: (1) regular occlusion and (2) irregular occlusion.
The tests were conducted in normal indoor lighting (300 lux) to avoid
confusing the effects of occlusion and low illumination.

For the first case, shown in Fig. 20(a), 20 of the 35 tags (57% of the
image) are uniformly covered. In the second case shown in Fig. 20(b),
a number of shapes are arranged in a diagonal pattern, partially or fully
occluding all of the tags on the image. These shapes cover approximately

Fig. 17. (a) Landing pad image with significant glare created by a 900-lumen light. (b) and (c) Change in glare pattern due to platform
motion during a typical test.

Fig. 18. Estimation of aircraft attitude angles relative to a landing
pad undergoing ship-deckmotion from onboard camera, with a 900-
lumen light used to simulate glare.

49% of the image. Note that, due to the partial obstruction of all tags, a
fiducial algorithm will fail outright under this condition.

The results of the first case are shown in Figs. 21 and 22. As in the
previous two cases, the results accurately follow the ground truth data,
and the RMSE suggests similar levels of error to the previous cases. The
results for the second case are given in Figs. 23 and 24. The estimates
of roll and pitch are noisier than in the previous case, and, while still
accurate overall, display increased error compared to ground truth. The
RMSE results also show increased error for both attitude and position
estimates compared to the previous case.

Increasing camera distance

For the previous hand-held tests, the camera was held at a vertical
distance of approximately 40 cm from the landing pad. This condition
simulates the terminal landing phase, in which the aircraft is hovering
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Fig. 19. Estimation of aircraft position relative to a landing pad un-
dergoing ship-deck motion from onboard camera, with a 900-lumen
light used to simulate glare.

closely above the ship-deck. However, the effect of increasing this dis-
tance is also of interest, as the feature-matching approach may also be
used during earlier landing phases in which the camera is further from
the landing pad. Therefore, a test was completed to demonstrate the ef-
fect of increasing the camera distance from the landing pad image. For
this test, the vertical (Z-axis) distance was increased to approximately
85 cm, double the distance for the previous tests.

The results of this test are provided in Figs. 25 and 26. The attitude es-
timation results are accurate overall but show increased noise compared

Fig. 20. Occluded landing pad images used to evaluate algorithm performance. (a) Occlusions uniformly covering 20 of the 35 tags, or 57%
of the landing pad image. (b) Irregular occlusions partially or fully covering all tags. These occlusions cover 49% of the image.

Fig. 21. Estimation of aircraft attitude angles relative to an occluded
landing pad undergoing ship-deckmotion. The occlusions uniformly
cover 57% of the marker patterns on the landing pad image.

to previous tests. The position results follow the ground truth closely. The
RMSE results further confirm these observations; the position estimation
error remains low, but the error in attitude estimation is similar to that of
the irregular occlusion case.

Feature match and inlier summary

As the count of feature matches and inliers has a significant effect
on the quality of pose estimates, analyzing this data for different test
cases can provide additional insight. Mean counts of feature matches and
inliers are provided in Table 5.

From this data, a general correlation can be observed between atti-
tude estimation error and feature match and inlier counts. In cases with
low numbers of feature matches, specifically the irregular occlusion and
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Fig. 22. Estimation of aircraft position relative to an occluded land-
ing pad undergoing ship-deck motion. The occlusions uniformly
cover 57% of the marker patterns on the landing pad image.

Fig. 23. Estimation of aircraft attitude angles relative to an occluded
landing pad undergoing ship-deck motion. Irregular occlusions par-
tially or fully cover all marker patterns on the landing pad image.

increased distance cases, the RMSE for roll and pitch is notably larger
than the other cases.

However, a similar correlation is not apparent for position estimates.
The RMSE for linear position is comparable for all visually degraded
test cases, excluding the irregular occlusion case. This is despite the

Fig. 24. Estimation of aircraft position relative to an occluded land-
ing pad undergoing ship-deck motion. Irregular occlusions partially
or fully cover all marker patterns on the landing pad image.

Fig. 25. Estimation of aircraft attitude angles relative to a landing
pad undergoing ship-deck motion, with the Z-axis (vertical) distance
increased from previous tests.

significant variation in mean number of feature matches. The error in
linear position is much greater for the quadrotor moving case. For this
case, the large-angle motions introduced factors such as motion blur,
large out-of-plane rotations, and the landing image partially moving out-
side the camera field of view. This indicates that these conditions have a
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Fig. 26. Estimation of aircraft position relative to a landing pad un-
dergoing ship-deck motion, with Z-axis (vertical) distance increased
from previous tests.

Table 5. Summary of mean feature match and inlier counts for
different test cases

Test Case Mean Feature Matches Mean Inliers

Quadrotor stationary 346 302
Quadrotor moving 252 197
Low illumination 360 317
Glare 154 127
Occlusion (regular) 199 161
Occlusion (irregular) 65 50
Increased camera distance 44 37

major effect on the accuracy of position estimates. The error also in-
creases modestly in the irregular occlusion case. This suggests that oc-
clusions interfering with larger patterns on the landing image, and by
extension larger features, may have a moderate effect on position esti-
mation error.

Free-Flight Hover Tests

The algorithm was next validated during hovering flight. The quadro-
tor was manually piloted through takeoff, hover above the image, and
landing. Algorithm output was logged during the entire flight for each
test. Only the hover segment is presented here since the goal of these
experiments is to evaluate performance in hover.

Baseline conditions

Results were initially collected for ideal visual conditions, indoor
lighting (300 lux), and no occlusion of the pad. For this test, the landing

Fig. 27. Estimation of hovering aircraft attitude angles relative to a
stationary landing marker in indoor illumination (300 lux).

Fig. 28. Estimation of hovering aircraft position relative to a station-
ary landing marker in indoor illumination (300 lux).

image was secured to the ground so no deck motions were present. The
results of this test are shown in Figs. 27 and 28. The estimated pose, both
attitude and position, closely follows the ground truth. Quantitatively,
this data shows an RMSE of 2 cm in each linear axis and an RMSE of
2.3 deg and 1.3 deg in pitch and roll, respectively. While some minor
noise is present in the raw estimates for pitch and roll due to quadrotor
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Table 6. RMSE for free flight in visually degraded conditions

Roll Pitch
Test Case X (cm) Y (cm) Z (cm) (deg) (deg)

Low illumination only 3.0 3.0 1.7 2.0 1.2
Occlusion only 0.9 1.0 2.1 1.1 1.2
Low illumination and 1.3 1.3 3.0 2.2 2.0

occlusion

vibration as well as the increase in Z-position compared to the hand-held
test condition, this noise is mostly mitigated by the Kalman filter. This
indicates that, under ideal visual conditions, vibration and small motions
from actual quadrotor hover have a minimal effect on the quality of al-
gorithm output.

Visually degraded conditions

Next, visually degraded conditions were introduced. Occlusion and
reduced illumination were considered, as these conditions were the most
challenging in the controlled hand-held test cases earlier. As in the previ-
ous test, the landing pad was fixed to the ground. The quantitative RMSE
results for all cases are given in Table 6.

A test was first completed in dark indoor illumination (10 lux) for a
nonoccluded landing pad. These results are shown in Figs. 29 and 30.
Additional tests were completed for an occluded landing pad in indoor
illumination (300 lux), shown in Figs. 31 and 32, and dark indoor illumi-
nation (10 lux), shown in Figs. 33 and 34. The landing pad was occluded
by covering 57% of the tags on the image.

For all cases, the estimated position closely follows the ground truth
position, showing no significant change in performance with visually de-
graded conditions.

For occlusion in indoor lighting, some noise is present in the raw es-
timates of roll and pitch, though this noise is mostly mitigated by the
Kalman filter. With a combination of low illumination and occlusion, an
RMSE of 2.2 deg in pitch and 2.0 deg in roll is observed, higher than
with occlusion or low illumination alone. However, some individual at-
titude estimates show errors exceeding 10 deg. Errors such as this could
cause the controller to falsely reject a period of calm deck motion for
landing. While this in itself will not result in a crash, this could make it
more difficult to autonomously carry out a landing.

Compared to the hand-held tests, the quality of pose estimation de-
creases somewhat in free flight. Quantitatively comparing the RMSE re-
sults, while the pose estimation errors are still low overall, the errors do
increase due to vibrations and aircraft motions in free flight.

Ship-deck motion

Finally, a test was completed to evaluate algorithm performance in
hover for ship-deck motion. For this test, the landing pad was attached
to a Stewart platform following the same Sea-state 6 motion history used
for the hand-held tests. The test was conducted under ideal visual con-
ditions, indoor lighting (300 lux), and with no occlusion of the landing
image. The results of this test are given in Figs. 35 and 36. As in the
previous tests, the results follow the ground truth accurately. For the po-
sition estimates, this data shows an RMSE of 3.1 cm in the X-direction,
2.9 cm in the Y-direction, and 3.7 cm in the Z-direction. For attitude esti-
mates, an RMSE of 1.8 deg in pitch and 1.9 deg in roll is observed. These
errors show only a modest increase from the baseline case. The feature-
based algorithm is, therefore, capable of accurately estimating the pose
of a moving ship-deck in free hover.

Fig. 29. Estimation of hovering aircraft attitude angles relative to a
stationary landing marker in low illumination (10 lux).

Fig. 30. Estimation of hovering aircraft position relative to a station-
ary landing marker in low illumination (10 lux).

Performance Comparison with Fiducial-Based Approaches

Previous work on vision-based landing using fiducial markers can
provide a useful benchmark for the performance of the feature-based
algorithm. The feature-based algorithm offers advantages over fiducial-
based techniques, namely robustness to visual degradation; addition-
ally, the chosen landing pad image resembles typical fiducial marker
designs. Therefore, it is important to investigate if the feature-based
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Fig. 31. Estimation of hovering aircraft attitude angles relative to
a stationary, 57% occluded landing marker in indoor illumination
(300 lux).

Fig. 32. Estimation of hovering aircraft position relative to a station-
ary, 57% occluded landing marker in indoor illumination (300 lux).

technique offers comparable pose estimation accuracy to fiducial-based
approaches.

Our previous fiducial-based algorithm, evaluated under oscillating
motion in visually ideal conditions, produced pose estimates with error
of approximately 1–2 cm along each linear axis, 1–2 deg in pitch, and

Fig. 33. Estimation of hovering aircraft attitude angles relative to
a stationary, 57% occluded landing marker in low illumination
(10 lux).

Fig. 34. Estimation of hovering aircraft position relative to a station-
ary, 57% occluded landing marker in low illumination (10 lux).

5 deg in roll (Ref. 18). Araar et al. utilized a landing pattern consist-
ing of multiple AprilTag markers for landing on a linearly moving (non-
rotating) platform, reporting a pose estimation error of approximately
1 cm for each linear axis and 0.5–7 deg for rotation (Ref. 1). Nichol-
son et al. estimated the pose of a ship-deck at varying sea-states using a
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Fig. 35. Estimation of hovering aircraft attitude angles relative to a
landing pad undergoing ship-deck motion.

Fig. 36. Estimation of hovering aircraft position relative to a landing
pad undergoing ship-deck motion.

recursive AprilTag fiducial marker array; vision-based estimates were
fused with inertial data for improved estimation quality. The results
found an average error of 8–23 cm for position estimates and 1.8–3.1
deg for orientation (Ref. 10).

For the feature-based algorithm, error across various test scenarios
was found to be less than 4 cm along each linear axis and 2.5 deg for

pitch and roll. Based on these results, the feature-based algorithm demon-
strates comparable pose estimation accuracy to approaches using fiducial
markers.

Conclusions

This work refined and extensively characterized a 2D feature-based
vision algorithm for ship-deck landing under degraded visual conditions.
Systematic tests were carried out on a quadrotor uncrewed aerial sys-
tem developed in-house which incorporates a computationally powerful
flight computer. All computations were onboard. A series of real-time
tests, with the quadrotor moved by hand for large angles, were completed
to first evaluate the algorithm’s performance. Free-flight tests were then
carried out. From these results, the following key conclusions are drawn:

1) A feature-based algorithm is capable of accurately estimating the
pose of a stochastically moving platform at Sea-state 6 in both controlled
and free-flight conditions.

2) A reference image with many distinct, high-contrast features is
ideal for good algorithm performance. While the algorithm can function
with typical ship-deck markings, performance degrades as these patterns
have few good features.

3) In ideal visual conditions, the vision algorithm could successfully
estimate large variations in attitude in excess of 20 deg.

4) The performance of the algorithm is resilient to visually challeng-
ing conditions. In hand-held tests, where roll motions of up to 15 deg
were present, the ship-deck pose could be accurately estimated with low
illumination, glare, and occlusion of the landing pad as well as with in-
creased camera distance. The deck pose could also be accurately esti-
mated in free-flight hover with occlusion and low illumination.

5) Vibrations and small motions introduced in free hover have a mi-
nor effect on algorithm performance, Noise in algorithm output can be
mitigated through Kalman filtering.

6) A time delay of approximately 400 ms was present in the vision
algorithm output. This was caused by a combination of camera latency
and algorithm computation time. However, this delay is not expected to
significantly affect tracking and landing.

7) With onboard computer and vision hardware, the algorithm up-
dates at a speed of 9–11 Hz, which is adequate for capturing ship-deck
motion.

8) The pose estimation results can be significantly improved by in-
corporating thresholds for feature matches and inliers; such thresholding
allows poor pose estimates to be automatically rejected.
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