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This paper presents a new and specialized mesh partitioner for large-scale three-dimensional multibody
rotor dynamic models. This partitioner enables parallel solution with modern domain decomposition
algorithms of complex, multibody, three-dimensional finite element problems. A parallel solver using a
state-of-the-art iterative substructuring algorithm, FETI-DP, is developed in this paper to solve the parti-
tioned data structures. The main feature of the partitioner is the ability to robustly partition any generic
multibody structure, although it has several special features for rotary-wing structures. The NASA Tilt
Rotor Aeroacoustic Model (TRAM), a 1/4 scale V-22 model, was specially released by NASA as a challenge
test case. This model contains four flexible parts, six joints, 18 composite material decks, a blade fluid–
structure interface, and control angle inputs. The parallel solver scalability is studied for progressively
increasing complexity, from the isolated rotor blade to the blade and hub assembly. The use of a skyline
solver for the coarse problem is shown to eliminate the coarse problem barrier. The special partitioner
features are demonstrated to enable efficient parallel solution and significantly improve the performance
and scalability. The principle barrier of computational time that prevented the use of high-fidelity three-
dimensional structures in rotorcraft is thus resolved.

� 2023 Elsevier Ltd. All rights reserved.
1. Introduction

This paper presents the development and application of a spe-
cialized mesh partitioner for a parallel and scalable three-
dimensional (3D) finite element (FE) multibody solver built for
complex rotary-wing structural dynamics problems. A 3D FE-
multibody solver faces several barriers for routine use in the design
of real rotors, chief among which is computational time. A special-
ized mesh partitioner, which partitions the full multibody system
for parallel analysis, is the focus of this paper and promises to
expand the application of such a solver from academic to realistic.
The NASA Tilt Rotor Aeroacoustic Model (TRAM), a 1/4 scale V-22
proprotor, is used as a realistic test case to demonstrate the robust-
ness of the partitioner and scalability of the solver. This test case
was specially released for this project, with detailed drawings of
its internal structure, to provide a modern challenge problem.

A robust, parallel, and scalable 3D FE-multibody solver for
rotary-wing applications was envisioned for the design of modern
rotorcraft by NASA in 2008 [1]. Conventional analyses uses 1D
composite beam-based models for the blades, which imposes
assumptions and limitations on the analysis. Moving to 3D
removes these limitations, increasing both the scope and accuracy
of analysis. However, the many multibody bearings and load paths
associated with a modern rotor create complications for domain
decomposition algorithms. The development of a new, specialized
mesh partitioner was necessary due to a lack of suitable options.
Current mesh partitioners, such as METIS, use graph-based parti-
tioning, making them fast and efficient for regular FE problems.
However, the addition of joints to model bearings and the con-
straints they impose on partitioning cannot easily be handled by
these existing partitioners, justifying the need for a new, special-
ized mesh partitioner.

1.1. Background and motivation

Current rotorcraft structural dynamics analyses model the rotor
blade as a slender one-dimensional (1D) composite beam,with two-
dimensional (2D) finite element models used to calculate the struc-
tural and inertial cross-sectional properties of the blade [2]. This
approach iswell documented andprovides adequate results for con-
ventional rotorcraft problems due to the long slender shape of rotor
blades. However, this method falls short in several key areas.
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Modern blades have material and geometric discontinuities due to
design or ballistic damage that cannot be captured using beams.
Modern hub components are 3D structures that provide kinematic
couplings and absorb maximum stresses and hence are crucial for
both stability and weight. Today modifications and enhancements
are made to beam boundary conditions to accommodate these
structures in a gross manner, but require fabrication and testing to
measure their properties. Dynamic stresses cannot be calculated.
The use of 3D models has the potential to overcome these barriers.
The flexible parts of a rotor, the parts that produce strains, can be
modeled from first principles with 3D finite elements (all bricks)
and bearings that provide constraints modeled with multibody
joints. Dynamic stresses and strains can be predicted in the blade
and the hub components up front in the design process.

The use of higher dimensional finite elements in rotorcraft anal-
ysis is routine for the fuselage. Fuselage models are typically cre-
ated in NASTRAN-like software with beam and shell elements.
The U.S. Navy DAMVIBS program [3] summarized the state-of-
the-art across U.S. industry with full-scale validation up to the
1990s. Since then some of these modes have been coupled with
rotor analysis [4,5], but the rotor was still modeled using beams.
Rotor dynamics require exact gyroscopic terms coupled with trim
controls that are missing in traditional finite elements. It also
requires aerodynamics. Over the past two decades, rotorcraft com-
putational fluid dynamics has matured to the point that unsteady
Reynolds-averaged Navier–Stokes computations can be carried
out on practical problems with tens millions of grid points on thou-
sands of cores. This has improved airload predictions, but the
increased accuracy does not flow into structural stresses as they
are tied to lower order beams [6]. The emergence of 3D structures
for rotors will equalize the imbalance in fidelity. Recognizing this,
the development of a parallel and scalable 3D FE-multibody solver
was identified by NASA [1] as a central component for next-
generation high-fidelity rotorcraft analysis, with work undertaken
at the University of Maryland (UMD).

The new U.S. Army/UMD solver X3D [7] uses 3D brick finite ele-
ments unified with multibody dynamics. Three-dimensional struc-
tural models with meshes and joints are created directly from CAD
models. This allows for the exact geometry, including any material
discontinuities, to be captured with no assumptions. Staruk et al.
[8,9] demonstrated Integrated 3D (I3D) aeromechanics modeling
using X3D, defined as the coupling of 3D structures with 3D aero-
dynamics. A tiltrotor conversion from helicopter to airplane, con-
sidered one of the most complicated flight regimes where the
critical design loads are encountered, was simulated. However,
the demonstration was limited to coarse meshes because there
was no partitioning tool. Even with the coarse mesh, the solution
time was nearly 10 days. This remains the principal barrier to using
3D structures for design of new rotors. The objective of this paper
is to break this barrier.

Modern iterative substructuring provides a path to breaking
this barrier, if an appropriate partitioner can be designed. The pres-
ence of multibody joints connecting many flexible parts break the
structure of finite element matrices, lead to excessive condition
numbers (j > 1� 1012), and break the rules of iterative substruc-
turing unless partitioned carefully to ensure non-null kernels.
There are no mesh partitioners currently available that can
breakup a 3D multibody problem while meeting the above chal-
lenges. Trying to mitigate these issues while retaining scalability
requires a specialized mesh partitioner for helicopter rotors.

The finite element tearing and interconnecting dual primal
(FETI-DP) method is a state-of-the-art iterative substructuring
method introduced by Farhat [10,11]. It is a domain decomposition
algorithm developed for structural mechanics, and hence uses non-
overlapping subdomains. The subdomains are solved by direct
2

factorization which works even for high condition numbers. The
interface is divided into a primal and dual problem. The primal
problem consists of a small subset of the interface, while the dual
problem is the remaining subset. An iterative solver, typically
equipped with a preconditioned conjugate gradient method, solves
the dual problem while a direct solver solves the primal problem.
For 3D elements, Farhat noted that the size of the primal problem
grew quickly with increasing subdomains, reducing computational
efficiency. Limiting the size of the primal interface produced better
efficiency, but at the cost of speed of convergence. Instead, enrich-
ing the primal problem by adding a set of Lagrangian multipliers
was suggested [10].

Datta and Johnson [12] introduced 3D modeling for rotary-wing
dynamics and adapted the FETI-DP algorithm for parallel solution.
They concluded that joints must be left out of the interface. But
they were unable to partition practical geometries around joints,
so they used idealized geometries for demonstration. They also
encountered the same barrier observed by Farhat that the primal
problem grew rapidly with increasing subdomains, a problem
aggravated by the need to partition around joints. The authors
addressed this problem by introducing special edge nodes with
redundant dual variables but this increased the number of itera-
tions and made partitioning even more complicated [13]. The
authors noted that a specialized mesh partitioner would be needed
to extend their work to realistic problems. The objective of this
paper was to develop this partitioner.

Currently, there are several mesh partitioners used for struc-
tural mechanics problems such as Zoltan [14], developed by San-
dia, and METIS [15], developed at the University of Minnesota.
While both offer an array of partitioning options and load balanc-
ing schemes, neither is equiped to handle multibody structures.
This paper proposes a partitioner that can handle multibody struc-
tures. While the partitioner can decompose any generic mesh it is
demonstrated in the context of a complex helicopter geometry
which motivated this work: the NASA TRAM Proprotor.

1.2. Organization of paper

The paper is organized as follows. First, the NASA TRAM Propro-
tor is presented. Then, the parallel solver is introduced, with the
FETI-DP algorithm reviewed to establish the general requirements
for the mesh partitioner. Next, the partitioner is described in detail,
along with special features added for complex rotorcraft problems.
Then the partitioner and solver are demonstrated on the NASA
TRAM rotor and validated against test data. The final few sections
study the performance and scalability of the solver, with emphasis
on the special features needed for helicopter rotors. Lastly, the con-
clusions are summarized.

2. NASA TRAM proprotor

The geometry is that of the NASA Tiltrotor Aeroacoustic Model
(TRAM). It is a 1/4 Mach-scale rotor designed to match the first
flap, lag, and torsion frequencies of the V-22 Osprey tiltrotor air-
craft. The TRAM proprotor was chosen as a test case for this paper
as it is an accurate representation of a realistic modern rotor with
multiple flexible hub components. The detailed internal drawings
and materials of TRAM were made available by NASA for this task.

2.1. Geometry

The CAD was created from engineering drawings in CATIA and
is shown in Fig. 1. An exploded view of the hub is shown in
Fig. 2. The four parts highlighted in boxes are flexible parts and
must be meshed. The two bearings, also boxed, are multibody



Fig. 1. The TRAM model.

Fig. 2. The complex root end; four flexible parts (red) and six multibody joints. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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joints. In addition there is a gimbal at the hub and joints at the top
and bottom of the pitch link through which control angles are
input. The blade and flexbeam are composite structures containing
11 and 7 different materials respectively. The pitch case and pitch
link are made of aluminum.

The four flexible parts are interconnected by 6 multibody joints
producing two parallel load paths from the blade to the hub. From
the blade, all loads are transferred through the grips to the pitch
case. The spherical outboard bearing between the pitch case and
flexbeam passes most of forces to the flexbeam while the moments
continue through the pitch case. The radial inboard bearing also
connects the flexbeam and pitch case, and passes only forces again
to the flexbeam. The flexbeam transfers the forces to the hub via a
bolt attachments at its root. The blade torsion loads are carried via
the pitch case to the pitch link. The joints are placed strategically to
govern natural frequencies, provide kinematic couplings for
Fig. 3. The TRAM structural mesh, including
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stability, admit control inputs, and distribute moments and shears
across the flexible parts to absorb dynamic stresses at minimum
weight. These details can be found in Staruk [8,9]. The partitioner
must retain the proper physics of these load paths and allow for
a varying number of partitions for each of the flexible parts, all
while load balancing the full problem.

2.2. TRAM finite element model

The CAD model was meshed using the Sandia software Cubit.
Each flexible part is meshed independently based on its resolution
needs. The multibody joints that connect the flexible parts have six
degrees of freedom (DOF): three translational and three rotational.
These can be locked or have mass, stiffness, and damping assigned
to match bearing properties. A joint motion can be commanded,
which is how the collective and cyclic pitch inputs are introduced
at the bottom of the pitch link. The 6 joints are summarized as
follows:

1. blade to pitch case grips — representing the bolts,
2. pitch case to flexbeam — representing the outboard centering

bearing,
3. pitch case to flexbeam — representing the inboard centering

bearing,
4. flexbeam to hub center of rotation — representing the gimbal,
5. top of pitch link to pitch horn — representing a spherical bear-

ing, and
6. bottom of pitch link to control pitch input – representing

another spherical bearing.

The full TRAM mesh is presented in Fig. 3, with sizes for each
component listed in Table 1. The number of nodes and elements
connected to each joint are also shown. The nodes associated with
each joint are eliminated by the solver and replaced by the joint
motions, of which there can be up to 6. The total number of DOF
is approximately 250,000.

3. Parallel solver

The parallel solver is reviewed in this section to help under-
stand the requirements for the partitioner and help interpret the
scalability results shown later. The partitioner is generic and not
specific to FETI-DP, but FETI-DP forces it to provide higher-level
data structures applicable to any non-overlapping substructuring
algorithm. The core solver acts on a symmetric linearized system
4 flexible parts and 6 multibody joints.



Table 1
TRAM mesh component information.

Component Nodes Elements

Fine Blade 77,217 8,532
Pitch Case 4,852 408
Flexbeam 8,575 844
Pitch Link 63 3
J1. Blade Root to Pitch Case 842 118
J2. Outboard Pitch Case to Flexbeam 918 192
J3. Inboard Pitch Case to Flexbeam 1560 242
J4. Flexbeam to Ref. 798 132
J5. Pitch Link to Pitch Horn 94 11
J6. Pitch Link to Ref. 9 1
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Ku ¼ f ð1Þ
where K is a structural stiffness, u is the solution at the nodes and
joints, and f is the forcing.

3.1. The FETI-DP algorithm

A quick review of the basic FETI-DP algorithm is presented
[10,11]. This algorithm partitions the structure into non-
overlappping subdomains. The subdomain problem is solved with
a direct solver, while the interface is solved iteratively. The algo-
rithm constructs the interface and preconditioner subdomain-by-
subdomain in a fully parallel manner. The interface is then iterated
in Krylov subspace for convergence.

The subdomain nodes are divided into internal nodes and inter-
face nodes, where interface nodes are shared by multiple subdo-
mains. The interface is further divided into corner, edge, and face
nodes as shown in Fig. 4. The governing equation for a single sub-
domain s is shown below with internal (I), face and edge (E), and
corner nodes (C) formally regrouped one after the other.
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Fig. 4. Description of interface nodes; the red circles indicate face nodes, the green trian
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The corner nodes are meant to create a coarse representation of the
full problem. This is somewhat equivalent to treating each subdo-
main as a pseudo-element, whose nodes are the corner nodes.
Hence the corner problem is also called the coarse problem. The
corner variables, also called primal variables, remain the original
DOF u. A Boolean matrix Bs

C is introduced to extract the subdomain
corner nodes from the global problem.

Bs
CuC ¼ us

C ð4Þ
The continuity across the non-corner interface nodes is ensured by
introducing an additional Boolean matrix Bs

R. It picks up the non-
corner interface from us

R and applies the proper sign (� 1) so that
Eq. (6) is satisfied at convergence, where s ¼ 1;2;3; . . . ;N is a sum-
mation over all subdomains.

Bs
Ru

s
R ¼ �us

E ð5Þ
XN
s¼1

Bs
Ru

s
R ¼ 0 ð6Þ

For an interface node that only touches two subdomains (face node)
the above equation simplifies to u1

1 � u2
1 ¼ 0, or simply equating the

solution across subdomains. However, for edge nodes (nodes that
touch more than 2 subdomains), one equation is not enough to
ensure continuity. For X shared subdomains, X-1 equations are
needed to ensure continuity. Normally, adding redundant dual vari-
able improves convergence (Ref. [13]). In this paper the maximum
number of redundant dual variables is used for all edge nodes. For
an edge node common to two subdomains, this gives us the one
equation presented previously. However, if an edge node is com-
mon to three subdomains, three equations are used (one more than
necessary): u1

1 � u2
1 ¼ 0; u1

1 � u3
1 ¼ 0, and u2

1 � u3
1 ¼ 0; and if an edge

node is common to four subdomains, six equations are used (three
more than necessary): u1

1 � u2
1 ¼ 0;u1

1 � u3
1 ¼ 0;u1

1 � u4
1 ¼ 0;u2

1�
u3
1 ¼ 0;u2

1 � u4
1 ¼ 0, and u3

1 � u4
1 ¼ 0.

Using Eq. (3) and (4), the subdomain equations of equilibrium
are written as the following:
gles edge nodes, and blue squares mark the corner nodes. (For interpretation of the
is article.)
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where set of Lagrangian multipliers k, also termed dual variables, is
introduced to enforce continuity across the interface, and ks is the
subdomain restriction. An explicit form for the subdomain nodes
us
R is obtained by rearranging Eq. (7).

us
R ¼ Ks

RR
�1 f sR � Bs

R
T
ks � Ks

RCB
s
CuC

� �
ð9Þ

For this equation, KRR must be invertible. This requires that the cor-
ner nodes be selected such that each subdomain has no rigid body
modes – there must be at least three noncollinear corner nodes per
subdomain.

Next, the following system of equations is created by: (1) sub-
stituting Eq. 9 into Eq. 6, and (2) substituting Eq. (9) into Eqs. (7)
and (8).

FRR FRC
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CC
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k
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� �
¼ dr

�f �C

� �
ð10Þ

where,
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This is a dual-primal problem, as it relates the primal displacements
at the corner nodes uC to the dual Lagrange multipliers k. By elim-
inating uC from Eq. (10), it can be turned into the symmetric posi-
tive definite dual interface problem:

FRR þ FRCK
�
CC

�1FT
RC

� �
k ¼ dR � FRCK

�
CC

�1f �C ð16Þ

which will be solved using a preconditioned conjugate gradient
algorithm. The FETI-DP method can be broken into four steps.

1. Interface Residual. The interface residual is calculated from
two sources: one that is local to the subdomain (Eq. (17)) and
one that comes from the corner nodes (Eq. (18)). The initial
value of ks is zero.
r1

r2
¼
XN
S¼1

Bs
RK

s
RR

�1 f sR � Bs
R
T
ks

� �
ð17Þ

¼ �
XN
S¼1

Bs
RK

s
RR

�1Ks
RCu

s
C ð18Þ

To calculate r2, the global coarse problem solution (uC) is
obtained with the following equation.

K�
CCuC ¼ FT

RCkþ f �C ð19Þ
The solution of the coarse problem is a serial step, so minimizing
the size will improve scalability. During the initial iteration pro-
cess, the coarse problem is gathered on each processor and fac-
torized. Therefore, during the ensuing iterations, the coarse
problem is only a right-hand-side solve.
5

2. Interface Preconditioning. Each subdomain will calculate its
own preconditioner for iterations. This paper uses the Dirichlet
preconditioner
M�1s ¼ Ks
EE � Ks

EIK
�1
II

s
Ks

IE: ð20Þ
The preconditioned residual is given by:

z ¼
XN
i

M�1sr: ð21Þ

Both the preconditioner and preconditioned residual can be
assembled in a parallel manner, as only subdomain variables
are needed in addition to the residual r from the previous step.

3. Matrix–vector Multiplication. This step is nearly identical to
the residual calculation, with Eqs. 17 and 18 becoming Eqs. 22
and 23.
Fp1 ¼
XN
S¼1

Bs
RK

s
RR

�1 Bs
R
Tvs

� �
ð22Þ

Fp2 ¼ �
XN
S¼1

Bs
RK

s
RR

�1Ks
RCu

s
C ð23Þ

where v s is the subdomain restriction of any vector to be multi-
plied, and Fp is the product of the matrix vector multiplication.

4. Krylov Iterations. Here the Conjugate Gradient method is used.
Steps 2 and 3 are repeated until convergence. After conver-
gence, the subdomain nodes can be recovered using Eq. (24).
Ks
RRu

s
R ¼ f sR � Bs

R
T
ks � Ks

RCu
s
C ð24Þ

To perform the above operations, special data structures must
be created by the partitioner. These are of 4 types.

1. Subdomain connectivity. The partitioner must divide a mesh
and reorder the element connectivity for each subdomain. The
nodes must be grouped into internal and interface nodes. When
partitioning the mesh all joints must be kept internal to a sub-
domain. A joint can have any number of DOF up to 6, and many
are often free in rotors which can make Ks

RR non-invertible if the
joint is on the interface. Having the joint internal to the subdo-
main avoids this problem, and includes it in the preconditioner
M�1 which is beneficial for convergence.

2. Interface Node Types. The interface nodes must be grouped
into distinct types: face, edge, and corner nodes. The corner
nodes must be carefully selected to ensure that ensure KRR is
invertible and that they form a coarse approximation of the full
mesh.

3. Subdomain Boolean Matrices. The Boolean matrix BR must be
created for each subdomain to pick the solution from a subdo-
main and assign it the proper sign.

4. Global Boolean Matrices. The Boolean matrix BC must be cre-
ated for each subdomain to pick the local corner solution from
the global corner problem.

3.2. Skyline storage

The analysis of large-scale problems is limited by the size of the
matrix K. Skyline storage [16] is a common solution. Fig. 5 shows
the structure of the K matrix for the TRAM blade. Only the entries
below the skyline are ever filled. The two largest subdomain matri-
ces introduced in the previous section, KRR and KII , as well as the
global coarse problem K�

CC , are stored as skylines to reduce memory
and computational requirements. Several reordering schemes are
included in the partitioner to find and utilize the smallest subdo-
main skylines.



Fig. 5. The stiffness matrix for the TRAM blade. Only the terms below the skyline
are stored.

R. Lumba and A. Datta Computers and Structures 281 (2023) 107015
4. Mesh partitioner

The main contribution of this work is the specialized mesh par-
titioner, which can breakup any generic multibody system of 3D
meshes into subdomains for parallel analysis. It contains special
features to improve the partition quality for helicopter rotors.

Before the partitioner is presented, the partitioner requirements
are listed to guide the remainder of the section. Next, the partition-
ing process is broken into four steps and each step is described in
detail. The special features for helicopter rotors are highlighted,
and the partitioner is demonstrated on the NASA TRAM proprotor.
Despite all of the features to ensure a quality partition, the total
computational time for the partitioner is approximately 5 min
for the TRAM blade and hub model.

4.1. Mesh partitioner requirements

The requirements for the mesh partitioner can be split into two
categories: general and algorithmic. The general requirements are
to:

1. partition unstructured, 27-node brick meshes into non-
overlapping subdomains,

2. sort subdomain nodes into internal and interface nodes, and
3. maintain load balance.

The algorithmic requirements are to:

1. keep multibody joints internal to a subdomain,
2. separate interface nodes into face, edge, and corner nodes,

while choosing corner nodes to ensure subdomain invertibility
and provide a coarse approximation to the full mesh, and

3. create subdomain Boolean structures (BR and BC) for each
subdomain

The requirement that all joints must be internal to a subdomain
can conflict with maintaining load balance. In this case, the joint
requirement overrides the need for load balance.

4.2. Physical partitioning

The first step in the partitioning process is to physically parti-
tion the structure. Two different strategies are used to physically
partition the structure: nominal and cross-sectional. The former
6

is generic to any structure, while the latter is designed to take
advantage of the geometry of a rotor blade.

4.2.1. Nominal strategy
The nominal partitioning strategy only uses element connectiv-

ity to physically divide the structure without any geometric bias.
The procedure is presented in Algorithm 1 and is explained below.
For simplicity, the procedure will first be explained without joints,
before adding them back at the end. An illustration is given in
Figs. 6d for the blade mesh of the TRAM.

Algorithm 1. Nominal Subdomain Construction

1: Create elem conn
2: elem sortðall elementsÞ ¼ 0
3: Find start elem (element with least numbers of
connections) using elem conn

4: for {Each subdomain S} do
5: sub elem ¼ start elem
6: look list ¼ elem connðstart elemÞ
7: while Have less elements than desired do
8: for {Go through each element in look list} do
9: if {elem sort ¼¼ 0 (element unsorted)} then
10: Add element to sub elem
11: Set elem sort ¼ S for this element
12: if {New element connected to joint} then
13: Add all elements connected to that joint to

sub elem
14: elem sort ¼ S for these elements
15: end if
16: if {Subdomain reached desired number of

elements} then 17: Break out of for loop
18: end if
19: end if
20: end for
21: Rebuild look list using newly added elements
22: end while
23: Save sub elem to global data structure
24: if {Not last subdomain} then
25: Find start elem for next subdomain.
26: Find an unsorted element touching last subdomain
27: end if
28: end for

Before the partitioning process begins, two global data struc-
tures are created: elem conn and elem sort. elem conn contains
the element connectivity and has one entry per element, where
entry N contains a vector of all elements that touch element N.
The vector elem sort is used to record if and where each element
is sorted and has one entry per element. For example, if
elem sort(N) = 0, then the element N is unsorted, but if
elem sort(N) = C, than the element N belongs to subdomain C. Next,
the partitioner identifies the element that touches the least num-
ber of other elements, known as the starter element. The starter
element will be the first element of the first subdomain. For rotor
problems, the starter element is usually located at the blade tip,
Fig. 6a, with a close up view shown separately in Fig. 6b.

For a single subdomain, two data structures are created on lines
5 and 6: sub elem and look list. The vector sub elem contains all ele-
ments belonging to that single subdomain and initially only con-
tains the starter element. The vector look list contains all
elements that touch any element within that subdomain and will
be used to find new elements to add. Initially, look list only con-
tains the elements that touch the starter element. Next, the subdo-



Fig. 6. Subdomain construction using the nominal partitioning strategy.
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main construction begins. The subdomain is constructed itera-
tively, with each iteration being one cycle through the while loop
from line 7. During each iteration, all unsorted elements in
look list are added to the subdomain on line 10. For the first itera-
tion of the first subdomain, no other elements are sorted, so all ele-
ments from look list will be added. This is shown in Fig. 6c, where
the starter element is highlighted in red, and the gray translucent
elements are those added during the first iteration.

As each element is added, two conditions are checked. The first
has to do with joints so is ignored for now. The second check is on
lines 16–18, which determines if the subdomain has reached the
desired number of elements. If so, the subdomain stops looking
for new elements and breaks out of the while loop from line 7.
However, if all elements from look list have been checked andmore
elements are still needed, look list will be rebuilt on line 21 using
the newly added elements. This entails going through each ele-
ment added in the last iteration and adding all elements that touch
that element to look list. The partitioner will then repeat the pro-
cess, going through look list and adding only the unsorted ele-
ments. Fig. 6d shows the subdomain after this second iteration of
adding elements. In this Figure, the subdomain after the first iter-
ation is highlighted in red, and the translucent elements are those
added during the second iteration. This process is repeated until
the current subdomain has enough elements, at which point the
while loop at line 7 is broken. Next, sub elem is saved to a global
data structure. If there is another subdomain to be constructed a
new starter element must be identified. This is done by selecting
an unsorted element that touches the recently constructed subdo-
main (line 24–27). Next, a new sub elem and look list are created
based on this new starter element and the process is repeated.

When considering joints, there is only one change in the proce-
dure illustrated above. When an element is added to sub elem in
line 10, the partitioner checks if it is a joint element. If so, all ele-
ments connected to that joint are added during the same iteration
to ensure that a joint remains internal to a subdomain.
7

During the partitioning process, the subdomains are divided
into equal sizes based on the number of elements as an initial
approximation to load balance. Due to the presence of joints,
equating the number of elements across subdomains may not be
possible. However, this is of little consequence, as it will be shown
that equating the number of elements is not true load balance, and
a refined load balancing scheme will be used later in the partition-
ing process.

Fig. 7 shows the TRAM model partitioned into six subdomains
using the nominal partitioning strategy. The subdomains grow in
every direction each iteration, resulting in irregular shapes. There
is nothing fundamentally wrong with this; solving this partition
will still yield the correct answer. However, the irregular partition-
ing will increase the complexity of the interface problem, resulting
in a high computational time.
4.2.2. Cross-sectional strategy for rotor blades
Due to the nature of their construction, most rotor meshes can

be structured in the radial direction, while having unstructured
cross sections, as shown in Fig. 8. The cross-sectional partitioning
strategy utilizes this structure.

Instead of building a subdomain from a starter element with no
preferred direction, the subdomain is constructed section-by-
section. Before partitioning begins, the partitioner sorts the ele-
ments into cross-sections based on the element coordinates, with
the only user input being the radial direction. The only change
made to the nominal subdomain construction (Algorithm 1) is that
the variable look list is assembled with a preference for elements in
the current cross-section. Only once the cross-section is full does
the partitioner move onto the next one. Figs. 9d show the first
two subdomain construction iterations for the same example as
the previous section.

While this approach is ideal for axial components like blades, it
is not suitable for non-axial components, such as hub parts. For
multibody structures, the partitioner uses a hybrid approach, with



Fig. 7. TRAM Model partitioned into 6 subdomains using the nominal partitioning approach.

Fig. 8. TRAM blade and a cross section. Cross sections are unstructured, and change from section to section with internal geometry.
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the cross-sectional strategy adopted for the blade and the nominal
strategy used for the hub components. Fig. 10 shows the TRAM
model partitioned into six subdomains using the hybrid strategy.
Note that the partition is more regular.
4.3. Subdomain reordering

The second step in the partitioning process is reorder the sub-
domain nodes to produce a lean skyline. The computational time
for each subdomain is heavily influenced by the band of the skyli-
nes, with a narrow band significantly reducing the computational
time. There are two skylines per subdomain – one each for KRR

and KII . Each subdomain is reordered independently of the others.
The partitioner uses two reordering schemes: connectivity-

based and geometry-based. For each subdomain, both schemes
are applied, creating multiple copies of the matrices with different
local ordering. A performance metric is calculated for each copy,
based on the number of floating-point operations (see next sec-
tion), and the copy with the lowest metric is used for that subdo-
main. Using both schemes for each subdomain allows for each
subdomain to be optimized individually.

In the connectivity-based scheme the subdomain will be rebuilt
N times, using N different starter elements, where N is a user input.
The use of various starter elements allows for the true minimum
metric to be found despite the subdomain geometry. These N per-
formance metrics are compared for the single subdomain and the
8

copy associated with the smallest metric is chosen. Note that the
composition of an individual subdomain does not change, rather
just the local subdomain numbering. For the geometric reordering
scheme, the nodes and elements are reordered along the X, Y, and Z
axes. The performance metric is checked for all six possible geo-
metric ordering cases. The effect of subdomain reordering on sol-
ver performance was previously studied by the authors, and it
was observed that the computational load decreases for all subdo-
mains, providing a reduction in computational time [17].
4.4. Load balancing

To achieve practical solver scalability, equal computational
workload for all processors, or load balance, is required. A load bal-
ancing scheme was implemented based on the number of floating-
point operations. The first step to setup this scheme was to deter-
mine the most computationally expensive parts of the algorithm. It
was found that the following two steps consistently took most of
the computational time.

1. Calculating the preconditioner.
M�1s ¼ Ks
EE � Ks

EIK
�1
II

s
Ks

IE ð25Þ

In this process, factorizing the matrix KII , the repeated right-
hand solves of KII with columns of KIE, and the matrix multipli-



Fig. 9. Subdomain construction using the cross-sectional partitioning strategy.

Fig. 10. TRAM Model Partitioned into 6 subdomains using the hybrid partitioning strategy.
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cation KEIK
�1
II are the major operations. Recall that skyline stor-

age is used for the matrices, complicating these operations.
2. Calculating the residual and the coarse problem K�

CC .
K�
CC ¼

XN
S¼1

Bs
C
T Ks

CC � Ks
CRK

s
RR

�1Ks
RC

� �
Bs
C ð26Þ

In this step, factorizing KRR, repeated right-hand solves of KRR,
and the matrix multiplication KCRK

�1
RR are the major operations.

In addition to these steps, the only other notable amount of
time was the time required for the CG iterations, which varied
based on the number of subdomains and other partitioner features,
namely corner node selection and partitioning strategy. However,
it was observed that load balancing the above steps also resulted
in adequate load balancing of the iterations, as each iteration
involves many of the same operations as the steps above, including
the repeated right-hand solves of KRR (Eqs. 18 and 22).

The load balancing scheme is used after the structure has been
partitioned. This process involves moving elements between sub-
domains, changing their composition. However, the computational
workload is dependent on the local node numbering (shape of sky-
line), and therefore subdomain reordering after load balancing
might change the computational workload for each subdomain,
9

destroying the load balance created. Rather, each time an element
is moved during the load balancing process, the two affected sub-
domains are reordered, to ensure that load balance is achieved
with the minimal subdomain workload. The affected subdomains
must be reordered each time an element is moved due to the
highly nonlinear relationship between a subdomain’s computa-
tional workload and its number of elements, to ensure that the
load balancing process uses an accurate workload for each
subdomain.

The psuedo-code for the refined load balancing scheme is pre-
sented in Algorithm 2. For a single load balancing iteration, the first
step is to calculate the performance metric (P metric) for each sub-
domain, equal to the number of floating-point operations for the
steps presented in the previous section. During this calculation,
the two reordering schemes introduced previously are used to
ensure that the smallest performance metric is used for each sub-
domain. Then each subdomain is examined, beginning with the
smallest subdomain (based on P metric). For subdomain s, two con-
ditions are checked; first, if there any subdomains with a larger
metric, and second, do any of those subdomains touch subdomain
s. Subdomains that satisfy both conditions are classified as candi-
date subdomains and added to sub cand. If no subdomains satisfy
both conditions (sub cand is empty), the focus moves on to the next
smallest subdomain.
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Algorithm 2. Refined load balancing
1: for {Load balancing iterations} do
2: P metric ¼ f ðsubÞ .Calculate performance metric with
current subdomains

3: for {Each subdomain s based on P metric} do
4: sub cand ¼ ½� .Initialize list of subdomains that can
help

5: move ¼ 1
6: while move ¼ 1 do
7: for {All subdomains except subdomain i} do
8: Find subdomains that touch subdomain s AND
have smaller P metric – add to sub cand

9: end for
10: if sub cand not empty then
11: for {Go through sub cand} do
12: Find element that touches both subdomains
13: if {Element not a joint element} then
14: Move element to subdomain s
15: Break out of current for loop, go to line 21
16: end if
17: end for
18: else
19: Set move ¼ 0
20: end if
21: if {Successfully moved an element} then
22: P metric ¼ f ðsubÞ . Recalculate metric with

updated subdomains
23: else
24: Set move ¼ 0
25: end if
26: end while
27: end for
28: end for
If there are candidate subdomains, then the partitioner steps
through each one on line 11, checking the elements that connect
the candidate subdomain to subdomain s. If the connecting ele-
ment is not a joint element, it is moved to subdomain s, and the
partitioner stops looking through the candidate subdomains and
moves on to line 21. After passing through all subdomain candi-
dates, if no element was moved, the partitioner exits the while loop
on line 6 and moves on to the next smallest subdomain. However,
if an element was moved, then the performance metric is recalcu-
lated for the two subdomains that were altered, and the process
repeats for subdomain s until it has an equal performance metric
to surrounding subdomains. This process is repeated for every sub-
domain for a single load balancing iteration. Typically, using 2NS

iterations, where NS is the number of subdomains, will produce
the optimal load balance for the system.

The floating-point operation-based load balance was observed
to be essential to obtain meaningful scalability [17]. However,
the one thing that can disrupt load balance is the presence of
multibody joints. A joint cannot be partitioned – therefore a joint
subdomain can only be as small as the joint itself. As the number
of subdomains is increased, eventually the joint subdomain(s) will
become significantly larger than the others, causing a load imbal-
ance that can limit the solver scalability. However, as demon-
strated by the authors [18], the partitioner can predict the
number of subdomains when the load imbalance will occur before
the analysis, allowing the user to avoid over-partitioning and run
close to optimal parallel efficiency.
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4.5. Creation of interface data structures

After the mesh has been partitioned and nodes reordered, the
interface must be organized. The first step is to identify the corner
nodes for each subdomain, which can have a large effect on conver-
gence behavior. The number of corner nodes per subdomain is a
user input. The complex geometry associated with realistic prob-
lems makes corner node selection difficult, and two approaches
are introduced to address this issue. After the corner nodes are
finalized, the Boolean and communication maps are created for
each subdomain.

4.5.1. Strict corner node problem
A strict definition of corner nodes – nodes shared by at least 3

subdomains or located at the geometric corners, works well for
an academic structured mesh, such as that shown in Fig. 12b. How-
ever, for an unstructured mesh, the strict definition can lead to the
corner nodes being a poor approximation of the full problem.
Fig. 11a shows the TRAM mesh split into 4 subdomains with 8 cor-
ner nodes per subdomain using the strict definition. Due the com-
plexity of the partitioned geometry, the corner nodes for the first
two subdomains are concentrated in a small region. The require-
ment that the coarse problem should represent a coarse finite ele-
ment description of the original problem cannot be consistently
met with strict corner nodes.

4.5.2. Minimal corner node problem
To improve the coarse problem, a robust selection strategy is

implemented. It works within the confines of the user specified
number of corner nodes per subdomain, but improves the quality
of the coarse problem. The strategy starts by identifying many cor-
ner candidates from existing interface nodes. To be a corner candi-
date, a node must satisfy the following conditions:

1. it must either touch at least three subdomains,
2. or it must touch at least two subdomains and be shared by two

or less elements within each individual subdomain.

This initial selection adds in more than just geometric corners,
providing plenty of candidates. Next, the partitioner down selects
the candidates by removing nodes, so that the final corner nodes
provide a proper coarse representation of the full problem. The
down selection is done subdomain-by-subdomain. The first step
is to identify all possible pairs of corner candidates. For example,
if there are 4 corner candidates then there are 6 possible pairs
(1–2, 1–3, 1–4, 2–3, 2–4, and 3–4). For each pair, the distance
between the nodes is calculated, and one node is removed from
the closest pair. Then the pairs and distances are recalculated,
and the process is repeated until the subdomain has the user
defined number of corner nodes. Fig. 11b shows 4 subdomains
with the same number of corner nodes per subdomain as
Fig. 11a; however the new corner nodes, if connected, create a
coarse mesh that well represents the geometry.

The minimal corner problem uses the robust selection strategy
to choose corner nodes. It gets its name from the fact that it pro-
vides the best coarse approximation of the full problem with the
minimum (no more than the user defined) number of corner nodes.
For a simple problem, the minimal corner problem will collapse to
selecting the geometric corners as seen in Fig. 12a. The size of the
coarse problem is kept small by allowing edge nodes that touch
three or more subdomains to be treated as interface nodes with
extra dual variables, similar to the procedure used in Ref. [13].

4.5.3. Enriched corner node problem
The enriched corner node problem was developed to prevent

the increase in the number of interface iterations associated with



Fig. 11. The TRAM blade partitioned into 4 subdomains – corner nodes chosen using two different approaches.

Fig. 12. The minimal and enriched coarse problems are presented.
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edge nodes [13]. The enriched corner problem keeps the corner
nodes used in the minimal coarse problem, and adds all edge nodes
that touch three or more subdomains as corner nodes, as shown in
Fig. 12b. This will increase the size of the corner problem, but is
made viable by the use of skyline storage for the coarse problem,
significantly reducing the communication and solution times.
4.5.4. Corner node summary
To summarize, there are three corner node problems that will

be used in this paper. The effect of the three corner node problems
on parallel solver performance will be studied later in the paper.

1. Strict - Only geometric vertices and nodes shared by three or
more subdomains.

2. Minimal - Some subset of interface nodes selected using the
robust corner node selection strategy to create best approxima-
tion of coarse problem.

3. Enriched - Exact set of corner nodes from the minimal corner
problem plus all nodes shared by three or more subdomains.

4.5.5. Boolean and communication maps
The Boolean maps, Bs

C and Bs
R from Eqs. (4) and (6), must be cre-

ated after the corner nodes are finalized. Processor-to-processor
11
communication requires maps of what is communicated and their
destination, because no subdomain has access to the full problem.
Therefore, both are created as the last step of the mesh partitioner.

The coarse problem requires a global communication step —
each processor must send its contribution and receive the global
solution. The Boolean map BC from Eq. (4) is created for each sub-
domain to extract the local solution from the global corner prob-
lem. The Boolean map Bs

R is used to enforce continuity across
neighboring subdomains. For a face node that only touches 2 sub-
domains, the requirement is that the sum of the Boolean operators
must equal 0 — the subdomain operators must alternate between
+ 1 and �1. For edge nodes, multiple redundant constraints are
used to improve performance, so each edge node from a single sub-
domain needs N Boolean operators, corresponding to the N subdo-
mains it touches. To enforce continuity across the interface, only
local communication is required – each subdomain need only
exchange data with its neighbors. These maps are present in the
placement of the Boolean operators within the map Bs

R.
5. Implementation

The X3D solver [7] was re-designed to implement the FETI-DP
algorithm. It covered all solution procedures: static, dynamic,



Fig. 13. Power vs. nondimensional thrust.

Fig. 14. Figure of merit vs. nondimensional thrust.
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eigenvalues, hover, and forward flight. Each subdomain was solved
on a separate processor, with Message Passing Interface (MPI) used
for communication. The results shown in later sections were
obtained with this new version of X3D.

The platform used was Deepthought2, the University of Mary-
land High-Performance Computing (HPC) cluster. This cluster con-
tains 480 nodes, each with 20 Intel Ivy Bridge E5-2680v2
processors running at 2.8 GHz. Each processor has a separate L1
(64 KB) and L2 (256 KB) cache, a shared L3 cache (25 MB), and a
total shared memory of 128 GB. For the work presented in this
paper, a maximum of 2048 processors (103 nodes) were used.
The input and output portion of the code (file I/O) are left out of
timings.

6. Validation

Before we delve into the performance of the partitioner and
parallel solver, we take a brief detour to validate them with exper-
imental test data from Ref. [19]. During the test, the blade collec-
tives were set and power P and thrust T measured.

The parallel solver was executed on 11 different partitions ran-
ging from 2–76 subdomains and identical results confirmed. The
aerodynamic model used a state-of-the-art lifting line model with
C81 airfoil decks. Airfoil tables developed for the NASA large civil
tiltrotor project are used [20]. Details of the aerodynamic model
can be found in Ref. [18]. The nondimensional power CP=r, nondi-
mensional thrust CT=r, and efficiency metric Figure of Merit FM are
used for validation.

CP=r ¼ P

qAbV
3
TIP

ð27Þ

CT=r ¼ T

qAbV
2
TIP

ð28Þ

FM ¼ C3=2
Tffiffiffi
2

p
CP

ð29Þ

where P is power (W), q is density (kg/m3), A is disk area (pR2,
where R is rotor radius), VTIP is the blade tip velocity, r is the ratio
of blade area to disk area (Ab=A, where Ab is the total blade area),
and T is thrust (N).

Fig. 13 and 14 present predicted nondimensional power and FM
as a function of nondimensional thrust. The airfoils required a Rey-
nolds number correction and a stall delay model [19]. Overall, the
predictions, though not satisfactory, represent the state-of-the-art.

The principal benefit of using 3D structures is the ability to pre-
dict the resulting stresses and strains for both the blade and hub
components. These stresses and strains are very hard to measure
in the rotating frame. The 3D solution provides a direct insight into
their nature that is not available otherwise. Fig. 15 shows the axial
stress (r11) for the blade and hub for a high thrust case CT=r =
0.125 near maximum figure of merit. The localized stress concen-
trations are clearly seen. Fig. 16a shows the stresses at the root sec-
tion. In addition to the axial stress r11, the other five stress
components are also generated by the solver. These stresses, espe-
cially in the hub components, will provide unique information not
available using current beam-based analysis.

7. Idealized beam

The performance and scalability of the solver is first studied for
an idealized test case: a cantilevered beam of 6.6 million DOF with
a structured mesh, uniform properties, a single joint only as a
boundary condition, and no control inputs. This is done to deter-
mine the performance and limitations of the algorithm on an ele-
mentary problem. For this structure, it is trivial to load balance
12
and select corner nodes – none of the special features are needed.
Two different coarse problems were studied, the minimal (Fig. 17a)
and the enriched (Fig. 17b). For this simple problem, the enriched
coarse problem matches the strict coarse problem, while the min-
imal coarse problem uses only geometric vertices. The solver per-
formance is studied for only a single linear matrix solve. The full
solution involving aerodynamics consists of repeated iterations of
the same solve, so one suffices for algorithmic purposes.

Fig. 18 shows the solution time on a single processor versus the
number of subdomains. For this work, a single processor solution
still uses a partitioned structure, however the subdomains are
solved sequentially on the single processor. It is well known that
simply partitioning a structural problem, even without parallel
implementation, will have a large reduction in solution time. How-
ever, what is noteworthy is that the use of the enriched coarse
problem reduces the total computational time compared to the
minimal coarse problem, opposite of what was seen by Datta and
Johnson [13]. To further investigate this, Tables 2 and 3 provide a
detailed break-up of timings. In the Tables, No. Corner refers to
the number of corner nodes and Corner Sky refers to the percent
of the total coarse matrix that is filled and stored. Sub. Decomp
refers to the subdomain factorization. Lastly, Coarse is the time
taken to solve the coarse problem and Iterations is the time
required for CG iterations.



Fig. 15. Axial Stress r11 throughout the blade for high thrust (CT=r = 0.125).

Fig. 16. Axial stress is shown at the root for high thrust (CT=r = 0.125).
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An important conclusion drawn is that the use of skyline stor-
age for the coarse problem is crucial for performance. Even for
the largest coarse problem (enriched 2048 subdomains) its solu-
tion time remains a fraction of the total time. The coarse problem
for this case is 110 K DOF, yet the matrix is very sparse, with just
over 0.25 percent of the full matrix being stored by the skyline
(Fig. 19). This reverses the conclusions made in previous studies
[12,13]. The largest difference between the coarse problems is
the time spent in iterating the dual variables. The minimal coarse
problem requires more iterations to converge, a fact that agrees
with previous studies. However, now the increase in time to solve
the coarse problem is insignificant when compared to the reduc-
tion of time for iterations, so there is a net gain in moving to the
larger coarse problem.
13
Next, the performance in parallel is examined, where every sub-
domain is solved on a separate processor. The speedup is defined as
single processor time divided by parallel time for the same number
of subdomains and same coarse problem. This ensures the speedup
is the true parallel speedup un-contaminated by the inherent ben-
efits of partitioning. Fig. 20a compares the speedup for the two
cases up to 2048 processors. For both, linear scalability is achieved
up to 1024 subdomains, but the speedup falls off by 2048 subdo-
mains. A closer look reveals that the minimal coarse problem has
a marginally better speedup compared to the enriched coarse
problem. This is because the coarse problem is a serial step, so
the larger coarse problem is naturally less scalable. But speedup
is defined relative to the single processor time; the enriched coarse
problem still beats the minimal in wall-clock time (Fig. 20b).



Fig. 17. The two coarse problems are presented for the idealized problem.

Fig. 18. The computational time on a single processor is shown for the cantilevered
beam.

Table 2
Detailed timings comparison on single processor for enriched coarse problem (sec).

No.
Sub

No.
Corner

Corner
Sky

Sub.
Factor

Coarse Iterations Solver
Total

512 10693 0.99 144931 2.0 3531 152404
1024 19397 0.53 99518 3.3 11112 114555
2048 36805 0.27 55273 5.9 53988 113086

Table 3
Detailed timings comparison on single processor for minimal coarse problem (sec).

No.
Sub

No.
Corner

Corner
Sky

Sub.
Factor

Coarse Iterations Solver
Total

512 1153 1.06 147378 5.0e-3 12817 164170
1024 2305 0.53 103122 1.0e-2 25146 132185
2048 4609 0.27 54915 2.0e-2 90412 149095
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To gain insights into the eventual barriers to speedup, a detailed
breakdown of the 1024 and 2048 processor cases was created and
is presented in Fig. 21a and 21b. Both the minimal and enriched
cases had similar trends, so only the enriched case is shown. The
algorithm was timed separately for each of the four major steps:
building the structural matrices, calculating the preconditioner,
calculating the residual, and iterating the dual variables until con-
vergence. The speedup for each step was computed, as well as the
relative time spent in each step. First, let us note the similar trends
between the two cases. The first two steps are achieving linear –
and in some cases superlinear – speedup. Superlinear speedup is
when the speedup is greater than the number of processors and
is due to cache benefits that come with running in parallel. The
performance of these two steps is expected, as they involve no
communication and should produce linear speedup for a perfectly
load-balanced case.

The main difference between the 1024 and 2048 subdomain
cases is the large decrease in efficiency during the CG iterations
and the increase in relative time spent in this step. The decrease
in efficiency is due almost entirely to the communication over-
head. The remaining inefficiencies are due to the small sections
that cannot be parallelized – only noticeable for high numbers of
subdomains, when each iteration takes only a few tenths of a sec-
ond. For the 1024 processor case, approximately 20 percent of
every iteration is communication overhead, with less than 5 per-
cent for serial steps. While this may seem high, the cache savings
are higher, as this step has superlinear speedup. However, when
moving to the 2048 processor case, nearly 50 percent of each iter-
ation is communication overhead, with an additional 20 percent
spent on the serial steps. The cache savings are unable to compen-
sate, resulting in poor parallel efficiency. For the 2048 subdomain
case, most of the solver time is spent performing iterations, con-
tributing to the poor overall speedup. This ratio of communication
time to computational time is common for high numbers of subdo-
mains and shows that nothing more can be squeezed out at this
problem size.

This main conclusion from studying the solver performance on
the idealized beam is that using skyline storage practically elimi-
nates the algorithmic barrier of the coarse problem. Next it will
be shown that for a realistic problem joints are the true barriers
to scalability.



Fig. 19. The coarse problem skyline is shown for the enriched problem with 2048
subdomains.

Fig. 20. The parallel performance is presented fo

Fig. 21. The efficiency of each step and the percentage of the total time taken for that st
linear speedup.
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8. TRAM Blade

This section demonstrates the performance and scalability of
the parallel solver on the NASA TRAM blade. Now the mesh is
unstructured, and although there is only one finite element part,
there is still a joint at the root used to apply the proper boundary
condition. The effect of partitioning strategy will be examined, fol-
lowed by the effect of corner node selection. Finally, the solver
scalability limits will again be explored.

8.1. Effect of partitioning strategy

This section compares the two partitioning strategies – nominal
versus cross-sectional. The enriched corner problem is used for all
cases with 30 corner nodes per subdomain. Fig. 22a shows cross
sectional partitioning can produce more dual variables than nom-
inal, particularly for a large number of subdomains. However,
cross-sectional partitioning will produce a much leaner skyline of
the interface, as presented in Fig. 22b.
r the idealized cantilevered beam problem.

ep are compared for 1024 and 2048 processors. The horizontal back line represents



Fig. 22. The interface characteristics are compared between the two partitioning strategies.

Fig. 23. The solver performance is compared between the two partitioning strategies.
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Fig. 23a compares the solver convergence for the two partition-
ing strategies when the blade is split into 12 subdomains. Due to
the simpler interface, the cross-sectional case converges much fas-
ter than the nominal case. Fig. 23b compares the parallel computa-
tional time for the two partitioning strategies. There are two
important conclusions. First, cross-sectional partitioning provides
a significant reduction in computational time compared to nominal
partitioning. Second, the use of nominal partitioning can lead to
jumps in computational time such as the one from 64 to 96 subdo-
mains. These jumps are due to an increase in the number of itera-
tions and are directly related to the complexity of the interface
problem. Using cross-sectional partitioning will not only improve
performance but reduce the inconsistencies in solver performance.

8.2. Effect of corner node selection strategy

This section studies the effect of different corner problems on
solver performance. For this section, all partitions are created using
cross-sectional partitioning. The number of corner nodes per sub-
domain is set to 30.

Fig. 25 shows the number of corner nodes for each of the three
corner problems: strict, minimal, and enriched. For low numbers of
subdomains, the minimal and enriched coarse problems are nearly
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identical. Recall that both use the robust corner node selection
strategy, with the only difference occuring if there are nodes that
are shared by three or more subdomains. The strict corner node
problem has less corner nodes than the other two for lower num-
bers of subdomains, as the number of geometric vertices is small
for these cases. For higher numbers of subdomains these trends
flip. The strict and enriched corner problems increase rapidly as
many nodes are shared by three or more subdomains. The minimal
problem still increases, but at a much slower rate.

Fig. 26 shows the number of solver iterations. The number of
iterations drastically increases for the minimal coarse problem in
agreement with previous studies [12,13]. An important observa-
tion is that the use of the enriched coarse problem does not provide
any significant benefit over the strict definition. This is because the
partitioned geometry results in the geometric vertices providing a
good approximation to the full problem. This is specific to this
problem, and will change when the full blade and hub model is
studied later. Finally, note that the use of corner node enrichment
provides the lowest number of iterations.

Fig. 27a compares the parallel computational time. The same
trends seen for the number of iterations persist here. Fig. 27b
shows the parallel speedup for the same cases. The trends are
now flipped, with the minimal corner problem producing the max-



Fig. 24. Convergence behavior for two corner problems with different number of
corner nodes.

Fig. 25. Number of corner nodes.
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imum speedup. Like the ideal beam up to 1024 subdomains, there
is a drop off in speedup that comes with increasing the size of the
coarse problem. This comes despite the decrease in actual compu-
tational time.

From this section, two major conclusions can be drawn. The
first is that admitting edge nodes to minimize the size of the corner
Fig. 26. Number of Ite
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problem does not improve throughput, but rather leads to a signif-
icant increase in computational time. The second is that the use of
the enriched corner problem does not provide any substantial
improvements compared to the strict selection.
8.3. Limit of scalability

This section explores the limits to solver scalability for the
TRAM blade. From Fig. 27b, linear speedup is obtained up to 64
subdomains for all corner node selection strategies. Partitioning
the problem further will only decrease the efficiency of the solver.
This can be traced back to two underlying causes. To better under-
stand these causes, Fig. 28a shows the detailed speedup for the
128-subdomain case with the enriched corner problem. Like the
ideal beam, most of the time is spent performing iterations, and
this step has very low speedup. A small part of this is again due
to the communication overhead. In this particular case, communi-
cation makes up about 8 percent of the time required for the iter-
ations. However, while this causes some decrease in solver
efficiency, it is not the main barrier to scalability.

From Fig. 28a, the construction of the subdomain matrices and
the calculation of the residual also have poor speedup. This illus-
trates that these inefficiencies are not just related to communica-
tion overhead but are in fact due to poor load balance caused by
the root joint. As the structure is partitioned into smaller and smal-
ler subdomains, the root joint eventually makes up an entire sub-
domain. Since it cannot be split, further partitioning only affects
the other subdomains, and causes a load imbalance. Fig. 28b shows
the predicted load balance versus the number of subdomains. The
predicted load balance is obtained using the floating-point
operations-based metric introduced in refined load balancing sec-
tion. The predicted load balance is the largest metric divided by the
smallest metric and should be 1 for a perfectly balanced partition.
Note that the predicted load balance is smaller than 1.2 until 96
subdomains, after which it quickly rises. Up until this point, any
small load imbalances are overcome by cache benefits, resulting
in linear speedup. From 96 subdomains onward, the load imbal-
ance caused by the root joint acts as a barrier to further scalability.
The partitioner calculates the predicted load balance before the
solver is run, so the user is able to select the highest number of
subdomains that provides good load balance. For realistic prob-
lems, the presence of joints will almost always become a barrier
to scalability long before communication overhead. The conclusion
that joints will act as a barrier to scalability for realistic problems
will be reinforced in the next section for the full blade and hub
model.
rations required.



Fig. 27. The solver performance is compared between the different corner node selection strategies.

Fig. 28. The limits to scalability are explored for the NASA TRAM Blade.

Fig. 29. TRAM partitioned into 4 subdomains with corner nodes chosen using two
different strategies.

Table 4
Coarse problem comparison.

Metric Strict Robust

No. of Corner Nodes 20 20
Size of Coarse Skyline 1830 1830
Coarse Problem Condition No. 3� 1012 2:5� 105

Initial Residual 8� 106 0.25
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9. TRAM

This section introduces the full model with all the complexities
of an advanced rotor blade and hub – multiple unstructured
meshes connected via multibody joints. The previous section
already showed cross-sectional partitioning consistently produces
the best performance, so that will not be studied. The effect of cor-
ner node selection will be re-examined in detail, since that is the
feature of greatest concern for a multibody structure.

9.1. Effect of corner node selection strategy

For the TRAM blade, there was little benefit in using the
enriched corner node problem over the strict. However, the impact



Fig. 30. Number of corner nodes.
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can be dramatic for a multibody structure. Fig. 29a and 29b show
the TRAM model partitioned into four subdomains with eight cor-
ner nodes per subdomain chosen using the strict definition and
robust selection. For this low number of subdomains, the minimal
and enriched coarse problems will be the same, with the corner
nodes obtained using the robust selection strategy. For this section,
Fig. 31. Number of Iterations required.

Fig. 32. The solver performance is compared be

19
this case will be known as the robust corner selection. Just four
subdomains suffice to illustrate the need for robust corner node
selection.

Recall that the strict selection is dependent on the partitioned
geometry, and in this case results in a poor approximation to the
full problem. The robust corner node selection strategy spreads
out the corner nodes, resulting in a good approximation. Table 4
compares the coarse problem characteristics. The number of corner
nodes and the size of the coarse skyline are the same, indicating
that the coarse problem solution time will be nearly identical.
However, the condition number for the strict selection is orders
of magnitude higher, leading to a very large initial residual.

Fig. 24 shows the robust selection strategy produces a lower
residual and a faster convergence compared to the strict selection
case, regardless of how many corner nodes are used. As the num-
ber of subdomains is increased, this makes it impractical to fully
converge cases using the strict selection. The use of strict corner
selection, while acceptable for the blade only, is highly dependent
on the partitioned geometry and therefore not sufficient for a gen-
eric problem.
9.2. Effect of corner node enrichment

The previous section illustrated the need for the robust selec-
tion strategy for complex multibody problems. This section com-
pares the minimal and enriched corner problems, focusing on
higher number of subdomains. Fig. 30 shows the number of corner
nodes for both corner problems. Note that the number of corner
nodes remains the same until 48 subdomains – this marks the
when nodes begin to be shared by more than three subdomains.
Fig. 31 compares the number of solver iterations for the two corner
problems. Two conclusions are drawn. First, any difference
between the enriched and minimal coarse problems is only seen
for large number of subdomains, in this case greater than 32. Sec-
ond, the minimal corner problem causes a large increase in itera-
tions with the number of subdomains.

Fig. 32a shows the parallel computational time for the two cor-
ner problems. Again, differences are only seen for more than 32
subdomains. For these cases, the enriched coarse problem provides
nearly a 50 percent reduction in computational time. Looking at
the parallel speedup in Fig. 32b similar trends to previous prob-
lems are observed – higher efficiency does not necessarily mean
the best throughput, due to the definition of speedup used in this
paper.
tween the two corner selection strategies.



Fig. 33. The limits to scalability are explored for the NASA TRAM Blade.
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From the last two sections, we conclude that the strict defini-
tion for corners cannot be used for a general multibody problem.
For moderate numbers of subdomains, both the minimal and
enriched coarse problem will produce identical results. But ulti-
mately, the enriched corner problem should be used for the best
performance. The use of the enriched corner problem will not hurt
performance, even for a low number of subdomains, so it is always
the recommended strategy.
9.3. Limit of scalability

This section explores the limits to solver scalability for the
TRAM model. Fig. 32b shows that linear speedup is achieved up
to 48 subdomains before decreasing. Fig. 33a shows the detailed
speedup for the 64-subdomain case with the enriched corner prob-
lem. The trends match those seen for the TRAM blade at 128-
subdomains. There are still some inefficiencies due to communica-
tion, but these only make up about 3% of the time required for iter-
ations. The main barrier to scalability is again the presence of
joints. Fig. 33b shows the predicted load balance versus the num-
ber of subdomains. The problem is relatively well balanced until 48
subdomains but jumps drastically for 64 subdomains. As seen
before, cache benefits can overcome small load imbalances and
maintain linear scalability up to 48 subdomains, but are not able
to compensate any further. As in the previous section, the roll off
in efficiency can be predicted by the partitioner before execution,
allowing the user to choose a load balanced partition.
10. Conclusions

A specialized mesh partitioner was developed for large-scale
rotor structures which use 3D finite element parts connected with
multibody joints. Several special features are included in the parti-
tioner specifically for rotary-wing structures. A state-of-the-art
iterative substructuring algorithm, FETI-DP, was implemented to
verify the partitioner, and the integrated solver was validated with
hover test data. The solver performance and scalability were mea-
sured for test problems of increasing complexity, with the final
being the NASA 1/4 scale V-22 model rotor. For each case, the sen-
sitivity of the solver to the general and unique partitioner features
was documented to understand its performance and scalability.
Based on this work, the following conclusions are drawn:
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1. The parallel and scalable solution of a large-scale, multibody,
rotary-wing blade and hub assembly is achievable. However, a
specialized mesh partitioner is needed to accommodate the
unique requirements of the multibody system.

2. For complex, multibody problems, joints are the main barrier to
scalability by causing poor load balance. However, it is possible
to predict the load imbalance up front, allowing the user to exe-
cute near peak efficiency. Despite the presence of joints, a TRAM
blade and hub model of 250,000 DOF showed linear speedup up
to 48 subdomains, with solution time reduced from over 30 min
to about 40 s.

3. The use of skyline storage for the coarse problem is crucial for
extending the scalability and performance of the solver. For a
finite element part with no joint, the coarse problem barrier is
eliminated, and linear speedup is achieved up to 1000 proces-
sors for a problem of size 6.6 million DOF. For practical
rotary-wing structures, additional corner nodes are added to
improve solver performance without significantly increasing
the coarse problem solution time.

4. For realistic rotary-wing structures, corner nodes must be care-
fully selected and enriched to maximize performance. Although
the speedup decreases due to additional corner nodes, the com-
putational time generally decreases by nearly 50 percent across
the board when using corner node enrichment. The robust cor-
ner node selection strategy used is automatic and is described
in the paper.

5. The cross-sectional partitioning strategy is essential for maxi-
mizing performance specially for a rotary-wing structure with
an elongated aspect ratio.

6. The partitioner integrated with a solver was validated on the
NASA TRAM rotor test case in hover for rotor thrust and power.
Unlike conventional beam-based analysis, aeroelastic stresses
were directly predicted in the blades and hub. These stresses
are impossible to measure in flight, and demonstrate the effec-
tiveness of the new solver.

The new solver opens up brand new areas of physical investiga-
tion and design optimization. The 3D stresses and strains in hover
and forward flight will now be available for future engineers. These
remain the tasks for the future.
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